Browse > Article

Optimization of Expression Conditions for Soluble Protein by Using a Robotic System of Multi-culture Vessels  

Ahn, Woo-Sung (Life Sciences Division, Korea Institute of Science and Technology)
Ahn, Ji-Young (Functional Proteomics Center, Korea Institute of Science and Technology)
Jung, Chan-Hun (Department of Molecular Biology, Sejong University)
Hwang, Kwang-Yeon (School of Life Sciences & Biotechnology, Korea University)
Kim, Eunice Eun-Kyeong (Life Sciences Division, Korea Institute of Science and Technology)
Kim, Joon (School of Life Sciences & Biotechnology, Korea University)
Im, Ha-Na (Department of Molecular Biology, Sejong University)
Kim, Jin-Oh (Department of Information and Control Engineering, Kwangwoon University)
Yu, Myeong-Hee (Functional Proteomics Center, Korea Institute of Science and Technology)
Lee, Cheol-Ju (Life Sciences Division, Korea Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.11, 2007 , pp. 1868-1874 More about this Journal
Abstract
We have developed a robotic system for an automated parallel cell cultivation process that enables screening of induction parameters for the soluble expression of recombinant protein. The system is designed for parallelized and simultaneous cultivation of up to 24 different types of cells or a single type of cell at 24 different conditions. Twenty-four culture vessels of about 200 ml are arranged in four columns${\times}$six rows. The system is equipped with four independent thermostated waterbaths, each of which accommodates six culture vessels. A two-channel liquid handler is attached in order to distribute medium from the reservoir to the culture vessels, to transfer seed or other reagents, and to take an aliquot from the growing cells. Cells in each vessel are agitated and aerated by sparging filtered air. We tested the system by growing Escherichia coli BL21(DE3) cells harboring a plasmid for a model protein, and used it in optimizing protein expression conditions by varying the induction temperature and the inducer concentration. The results revealed the usefulness of our custom-made cell cultivation robot in screening optimal conditions for the expression of soluble proteins.
Keywords
Parallel culture; high throughput; soluble protein; robotic system;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Baneyx, F. and M. Mujacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 1399-1408   DOI   ScienceOn
2 Burley, S. K. 2000. An overview of structural genomics. Nat. Struct. Biol. 7 Suppl: 932-934   DOI   ScienceOn
3 Duetz, W. A., L. Ruedi, R. Hermann, K. O'Connor, J. Buchs, and B. Witholt. 2000. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66: 2641-2646   DOI   ScienceOn
4 Gillette, W. K., D. Esposito, P. H. Frank, M. Zhou, L. R. Yu, C. Jozwik, X. Zhang, B. McGowan, D. M. Jacobowitz, H. B. Pollard, T. Hao, D. E. Hill, M. Vidal, T. P. Conrads, T. D. Veenstra, and J. L. Hartley. 2005. Pooled ORF expression technology (POET): Using proteomics to screen pools of open reading frames for protein expression. Mol. Cell. Proteomics 4: 1647-1652   DOI   ScienceOn
5 Hedren, M., A. Ballagi, L. Mortsell, G. Rajkai, P. Stenmark, C. Sturesson, and P. Nordlund. 2006. GRETA, a new multifermenter system for structural genomics and process optimization. Acta Crystallogr. D Biol. Crystallogr. 62: 1227-1231   DOI   ScienceOn
6 Hong, I.-P., S. Anderson, and S.-G. Choi. 2006. Evaluation of a new episomal vector based on the GAP promoter for structural genomics in Pichia pastoris. J. Microbiol. Biotechnol. 16: 1362-1368   과학기술학회마을
7 Kachel, V., G. Sindelar, and S. Grimm. 2006. Highthroughput isolation of ultra-pure plasmid DNA by a robotic system. BMC Biotechnol. 6: 9
8 Page, R., K. Moy, E. C. Sims, J. Velasquez, B. McManus, C. Grittini, T. L. Clayton, and R. C. Stevens. 2004. Scalable high-throughput micro-expression device for recombinant proteins. BioTechniques 37: 364-370   DOI
9 Park, S.-L., E.-J. Shin, S.-P. Hong, S.-J. Jeon, and S.-W. Nam. 2005. Production of soluble human granulocyte colony stimulating factor in E. coli by molecular chaperones. J. Microbiol. Biotechnol. 15: 1267-1272   과학기술학회마을
10 Redaelli, L., F. Zolezzi, V. Nardese, B. Bellanti, V. Wanke, and D. Carettoni. 2005. A platform for high-throughput expression of recombinant human enzymes secreted by insect cells. J. Biotechnol. 120: 59-71   DOI   ScienceOn
11 Studier, F. W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 60-89   DOI
12 Swalley, S. E., J. R. Fulghum, and S. P. Chambers. 2006. Screening factors effecting a response in soluble protein expression: Formalized approach using design of experiments. Anal. Biochem. 351: 122-127   DOI   ScienceOn
13 Willer, M., A. J. Jermy, B. P. Young, and C. J. Stirling. 2003. Identification of novel protein-protein interactions at the cytosolic surface of the Sec63 complex in the yeast ER membrane. Yeast 20: 133-148   DOI   ScienceOn
14 Winograd, E., M. A. Pulido, and M. Wasserman. 1993. Production of DNA-recombinant polypeptides by tacinducible vectors using micromolar concentrations of IPTG. BioTechniques 14: 886-890
15 Lee, K., H.-S. Joo, Y.-H. Yang, E. Song, and B.-G. Kim. 2006. Proteomics for Streptomyces: 'Industrial proteomics' for antibiotics. J. Microbiol. Biotechnol. 16: 331-348   과학기술학회마을
16 Lesley, S. A. 2001. High-throughput proteomics: Protein expression and purification in the postgenomic world. Protein Expr. Purif. 22: 159-164   DOI   ScienceOn
17 Harms, P., Y. Kostov, J. A. French, M. Soliman, M. Anjanappa, A. Ram, and G. Rao. 2006. Design and performance of a 24-station high throughput microbioreactor. Biotechnol. Bioeng. 93: 6-13   DOI   ScienceOn
18 Puskeiler, R., A. Kusterer, G. T. John, and D. Weuster-Botz. 2005. Miniature bioreactors for automated high-throughput bioprocess design (HTBD): Reproducibility of parallel fedbatch cultivations with Escherichia coli. Biotechnol. Appl. Biochem. 42: 227-235   DOI   ScienceOn
19 Steen, J., M. Uhlen, S. Hober, and J. Ottosson. 2006. Highthroughput protein purification using an automated set-up for high-yield affinity chromatography. Protein Expr. Purif. 46: 173-178   DOI   ScienceOn
20 Cha, K.-H., M.-D. Kim, T.-H. Lee, H.-K. Lim, K.-H. Jung, and J.-H. Seo. 2006. Coexpression of protein disulfide isomerase (PDI) enhances production of kringle fragment of human apolipoprotein(a) in recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 308-311   과학기술학회마을
21 Puskeiler, R., K. Kaufmann, and D. Weuster-Botz. 2005. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol. Bioeng. 89: 512-523   DOI   ScienceOn
22 Galloway, C. A., M. P. Sowden, and H. C. Smith. 2003. Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. BioTechniques 34: 524-526, 528, 530
23 Baneyx, F. and G. Georgiou. 1992. Expression of proteolytically sensitive proteins in E. coli, pp. 69-108. In Ahren, T. J. and M. C. Manning (eds.), Stability of Protein Pharmaceuticals: Chemical and Physical Paths of Protein Degradation. Plenum Press, New York
24 Weuster-Botz, D., J. Altenbach-Rehm, and M. Arnold. 2001. Parallel substrate feeding and pH-control in shaking-flasks. Biochem. Eng. J. 7: 163-170   DOI   ScienceOn
25 Friehs, K. and K. F. Reardon. 1993. Parameters influencing the productivity of recombinant E. coli cultivations. Adv. Biochem. Eng. Biotechnol. 48: 53-77
26 Bollag, D. M., M. D. Rozycki, and S. J. Edelstein. 1996. Protein Methods, 2nd Ed. Wiley-Liss, Inc., New York
27 Braun, P. and J. LaBaer. 2003. High throughput protein production for functional proteomics. Trends Biotechnol. 21: 383-388   DOI   ScienceOn
28 Samorski, M., G. Muller-Newen, and J. Buchs. 2005. Quasicontinuous combined scattered light and fluorescence measurements: A novel measurement technique for shaken microtiter plates. Biotechnol. Bioeng. 92: 61-68   DOI   ScienceOn
29 Endo, Y. and T. Sawasaki. 2004. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. J. Struct. Funct. Genomics 5: 45-57   DOI   ScienceOn
30 Schein, C. H. and M. H. M. Noteborn. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology 6: 291-294   DOI