• 제목/요약/키워드: solid density

검색결과 1,203건 처리시간 0.031초

센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출 (Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring)

  • 백수정
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

리튬이온전지 음극용 SiOx 나노입자의 조대화를 통한 전기화학 특성 향상 (Granulations of SiOx Nanoparticles to Improve Electrochemical Properties as a Li-Ion Battery's Anode)

  • 이보라;이재영;장보윤;김준수;김성수
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.70-77
    • /
    • 2019
  • $SiO_x$ nanoparticles were granulated, and their microstructures and effects on electrochemical behaviors were investigated. In spite of the promising electrochemical performance of $SiO_x$, nanoparticles have limitations such as high surface area, low density, and difficulty in handling during slurry processing. Granulation can be one solution. In this study, pelletizing and annealing were conducted to create particles with sizes of several decades of micron. Decrease in surface area directly influences the initial charge and discharge process when granules are applied as anode materials for Li-ion batteries. Lower surface area is key to decreasing the amount of irreversible phase-formation, such as $Li_2Si_2O_5$, $Li_2SiO_3$ and $Li_4SiO_4$, as well as forming the solid electrolyte interface. Additionally, aggregation of nanoparticles is required to obtain further enhancement of the electrochemical behavior due to restrictions that there be no $Li_4SiO_4$-related reaction during the first discharge process.

무연 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 압전 세라믹스의 하소온도 변화에 따른 전기적 특성 변화 (Piezoelectric Characteristics of Lead-Free 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 Ceramics According to Calcination Temperature)

  • 김성현;이상훈;한형수;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.35-39
    • /
    • 2019
  • In this study, we investigated the optimum calcination temperature of lead-free $0.74(Bi_{0.5}Na_{0.5})TiO_3-0.26SrTiO_3$(BNST) piezoelectric ceramics by analyzing the crystal structure, dielectric properties, and electric field-induced strain behavior. BNST ceramics prepared by conventional solid-state reaction methods at various calcination temperatures according to the industrial standard. All samples of BNST ceramics were subsequently sintered at $1,175^{\circ}C$ for 2 h. Crystal structure classification of the ceramics showed a single perovskite phase, with no second phase detectable for the samples calcined at $750^{\circ}C$ or higher. BNST samples calcined at $850^{\circ}C$ exhibited the most optimal values for itsand the common physical parameters of $density=5.518g/cm^3$, ${\varepsilon}=1,871.837$, $tan{\delta}=0.047$, and ${d_{33}}^*=874pm/V$.

MBE 법에 의해 성장된 고종횡비 InGaN 나노와이어 광촉매 (High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy)

  • 안소연;전대우;황종희;라용호
    • 한국결정성장학회지
    • /
    • 제29권4호
    • /
    • pp.143-148
    • /
    • 2019
  • 우리는 분자선 에피택시(Molecular Beam Epitaxy) 법을 사용하여 광전기화학적 물분해 수소생산용 고종횡비 GaN 기반 나노와이어를 Si 기판 위에 성공적으로 제작하였다. 주사전자현미경(SEM)과 에너지분산형 분광법(EDX)은 p-GaN:Mg 및 p-InGaN 나노와이어가 고밀도와 함께 수직으로 성장 되었음을 증명하였다. 또한, p-InGaN 나노와이어의 발광 파장을 552 nm에서 590 nm까지의 조절이 가능하다는 것을 확인하였다. 이렇게 제작된 p-InGaN 나노와이어는 태양광을 통해 외부 전위 없이 물분해가 가능한 수소생산용 광촉매로써 매우 유용하게 사용될 수 있다.

상온분사분말공정에 의해 SrTiO3 (100), (110) Seed에 코팅된 BaTiO3의 고온 성장 거동 분석 (High Temperature Grain Growth Behavior of Aerosol Deposited BaTiO3 Film on (100), (110) Oriented SrTiO3 Single Crystal)

  • 임지호;이승희;김기현;지성엽;정승운;박춘길;정한보;정대용
    • 한국재료학회지
    • /
    • 제29권11호
    • /
    • pp.684-689
    • /
    • 2019
  • Single crystals, which have complexed composition, are fabricated by solid state grain growth. However, it is hard to achieve stable properties in a single crystal due to trapped pores. Aerosol deposition (AD) is suitable for fabrication of single crystals with stable properties because this process can make a high density coating layer. Because of their unique features (nano sized grains, stress inner site), it is hard to fabricate single crystals, and so studies of grain growth behavior of AD film are essential. In this study, a $BaTiO_3$ coating layer with ${\sim}9{\mu}m$ thickness is fabricated using an aerosol deposition method on (100) and (110) cut $SrTiO_3$ single crystal substrates, which are adopted as seeds for grain growth. Each specimen is heat-treated at various conditions (900, 1,100, and $1,300^{\circ}C$ for 5 h). $BaTiO_3$ layer shows different growth behavior and X-ray diffraction depending on cutting direction of $SrTiO_3$ seed. Rectangular pillars at $SrTiO_3$ (100) and laminating thin plates at $SrTiO_3$ (110), respectively, are observed.

Dielectric Properties of BaTiO3 Substituted with Donor Dopants of Nb5+ and Ta5+

  • Kim, Yeon Jung
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.178-183
    • /
    • 2021
  • The temperature and frequency dependence of the dielectric constant of the BaTiO3 substituted with two types of donor dopants, Nb5+ and Ta5+, respectively, were compared and analyzed. Dielectric specimens of four specific compositions, Ba0.95Nb0.05TiO3, Ba0.90Nb0.10TiO3, Ba0.95Ta0.05TiO3, and Ba0.90Ta0.010TiO3 were prepared by calcining at 1100 ℃ and sintering at 1300 ℃ to have a perovskite structure to measure capacitance. XRD and SEM analysis were used to observe the structure, with particular focus on the integration into the Nb5+ and Ta5+ substituted BaTiO3 crystal lattice. X-ray diffraction peaks in the (200) and (002) planes were observed between 45.10° and 45.45° of the BaTiO3 solid solution substituted with different fractions of Nb5+ and Ta5+. The dielectric properties were analyzed and the relationship between the properties and structure of the substituted BaTiO3 was established. The fine particles and high density of the substituted BaTiO3 were maintained like pure BaTiO3, and in particular, a shift toward the low temperature side of the phase transition temperature range was clearly found, unlike pure BaTiO3. In addition, the phase transition at a temperature higher than the Curie temperature relatively satisfies the modified Curie-Weiss law.

A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries

  • Choi, Haeyoung;Bae, YeoJi;Lee, Sang-Min;Ha, Yoon-Cheol;Shin, Heon-Cheol;Kim, Byung Gon
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.78-89
    • /
    • 2022
  • ANODE-free Li-metal batteries (AFLMBs) operating with Li of cathode material have attracted enormous attention due to their exceptional energy density originating from anode-free structure in the confined cell volume. However, uncontrolled dendritic growth of lithium on a copper current collector can limit its practical application as it causes fatal issues for stable cycling such as dead Li formation, unstable solid electrolyte interphase, electrolyte exhaustion, and internal short-circuit. To overcome this limitation, here, we report a novel dual-salt electrolyte comprising of 0.2 M LiPF6 + 3.8 M lithium bis(fluorosulfonyl)imide in a carbonate/ester co-solvent with 5 wt% fluoroethylene carbonate, 2 wt% vinylene carbonate, and 0.2 wt% LiNO3 additives. Because the dual-salt electrolyte facilitates uniform/dense Li deposition on the current collector and can form robust/ionic conductive LiF-based SEI layer on the deposited Li, a Li/Li symmetrical cell exhibits improved cycling performance and low polarization for over 200 h operation. Furthermore, the anode-free LiFePO4/Cu cells in the carbonate electrolyte shows significantly enhanced cycling stability compared to the counterparts consisting of different salt ratios. This study shows an importance of electrolyte design guiding uniform Li deposition and forming stable SEI layer for AFLMBs.

Characterization and thermophysical properties of Zr0.8Nd0.2O1.9-MgO composite

  • Nandi, Chiranjit;Kaity, Santu;Jain, Dheeraj;Grover, V.;Prakash, Amrit;Behere, P.G.
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.603-610
    • /
    • 2021
  • The major drawback of zirconia-based materials, in view of their applications as targets for minor actinide transmutation, is their poor thermal conductivity. The addition of MgO, which has high thermal conductivity, to zirconia-based materials is expected to improve their thermal conductivity. On these grounds, the present study aims at phase characterization and thermophysical property evaluation of neodymium-substituted zirconia (Zr0.8Nd0.2O1.9; using Nd2O3 as a surrogate for Am2O3) and its composites with MgO. The composite was prepared by a solid-state reaction of Zr0.8Nd0.2O1.9 (synthesized by gel combustion) and commercial MgO powders at 1773 K. Phase characterization was carried out by X-ray diffraction and the microstructural investigation was performed using a scanning electron microscope equipped with energy dispersive spectroscopy. The linear thermal expansion coefficient of Zr0.8Nd0.2O1.9 increases upon composite formation with MgO, which is attributed to a higher thermal expansivity of MgO. Similarly, specific heat also increases with the addition of MgO to Zr0.8Nd0.2O1.9. Thermal conductivity was calculated from measured thermal diffusivity, temperature-dependent density and specific heat values. Thermal conductivity of Zr0.8Nd0.2O1.9-MgO (50 wt%) composite is more than that of typical UO2 fuel, supporting the potential of Zr0.8Nd0.2O1.9-MgO composites as target materials for minor actinides transmutation.

Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries

  • Liu, Ying;Lee, Dong Jun;Lee, Younki;Raghavan, Prasanth;Yang, Rong;Ramawati, Fitria;Ahn, Jou-Hyeon
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.97-102
    • /
    • 2022
  • Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.

리튬이온의 선택적 투과를 위한 Lithium Lanthanum Titanate계 분리막 제조 공정 개발 (Development of Lithium Lanthanum Titanate (LLTO) Membrane Manufacturing Process for Selective Separation of Lithium Ion)

  • 김영일;박상철;신광호;김인영;이기안;정성균;이빈
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.22-28
    • /
    • 2023
  • The global demand for raw lithium materials is rapidly increasing, accompanied by the demand for lithiumion batteries for next-generation mobility. The batch-type method, which selectively separates and concentrates lithium from seawater rich in reserves, could be an alternative to mining, which is limited owing to low extraction rates. Therefore, research on selectively separating and concentrating lithium using an electrodialysis technique, which is reported to have a recovery rate 100 times faster than the conventional methods, is actively being conducted. In this study, a lithium ion selective membrane is prepared using lithium lanthanum titanate, an oxide-based solid electrolyte material, to extract lithium from seawater, and a large-area membrane manufacturing process is conducted to extract a large amount of lithium per unit time. Through the developed manufacturing process, a large-area membrane with a diameter of approximately 20 mm and relative density of 96% or more is manufactured. The lithium extraction behavior from seawater is predicted by measuring the ionic conductivity of the membrane through electrochemical analysis.