DOI QR코드

DOI QR Code

Characterization and thermophysical properties of Zr0.8Nd0.2O1.9-MgO composite

  • Nandi, Chiranjit (Radiometallurgy Division, Bhabha Atomic Research Centre) ;
  • Kaity, Santu (Radiometallurgy Division, Bhabha Atomic Research Centre) ;
  • Jain, Dheeraj (Chemistry Division, Bhabha Atomic Research Centre) ;
  • Grover, V. (Chemistry Division, Bhabha Atomic Research Centre) ;
  • Prakash, Amrit (Radiometallurgy Division, Bhabha Atomic Research Centre) ;
  • Behere, P.G. (Radiometallurgy Division, Bhabha Atomic Research Centre)
  • Received : 2020.01.03
  • Accepted : 2020.07.15
  • Published : 2021.02.25

Abstract

The major drawback of zirconia-based materials, in view of their applications as targets for minor actinide transmutation, is their poor thermal conductivity. The addition of MgO, which has high thermal conductivity, to zirconia-based materials is expected to improve their thermal conductivity. On these grounds, the present study aims at phase characterization and thermophysical property evaluation of neodymium-substituted zirconia (Zr0.8Nd0.2O1.9; using Nd2O3 as a surrogate for Am2O3) and its composites with MgO. The composite was prepared by a solid-state reaction of Zr0.8Nd0.2O1.9 (synthesized by gel combustion) and commercial MgO powders at 1773 K. Phase characterization was carried out by X-ray diffraction and the microstructural investigation was performed using a scanning electron microscope equipped with energy dispersive spectroscopy. The linear thermal expansion coefficient of Zr0.8Nd0.2O1.9 increases upon composite formation with MgO, which is attributed to a higher thermal expansivity of MgO. Similarly, specific heat also increases with the addition of MgO to Zr0.8Nd0.2O1.9. Thermal conductivity was calculated from measured thermal diffusivity, temperature-dependent density and specific heat values. Thermal conductivity of Zr0.8Nd0.2O1.9-MgO (50 wt%) composite is more than that of typical UO2 fuel, supporting the potential of Zr0.8Nd0.2O1.9-MgO composites as target materials for minor actinides transmutation.

Keywords

Acknowledgement

The authors would like to thank Mr. Vivek Bhasin, Director, Nuclear fuels Group, Bhabha Atomic Research Centre, for his valuable suggestions and useful discussion regarding this work.

References

  1. H. Shahbunder, A.A. Al Qaaod, E.A. Amin, S. El-Kameesy, Effects of Pu and MA uniform and nonuniform distributions on subcritical multiplication of TRIGA Mark II ADS reactor, Ann. Nucl. Energy 94 (2016) 332-337. https://doi.org/10.1016/j.anucene.2016.03.016
  2. G. Alonso, E. Martinez, J.R. Ramirez, H. Hernandez, Radiotoxicity implications and reduction strategies of minor actinide in a boiling water reactor, Ann. Nucl. Energy 99 (2017) 410-420. https://doi.org/10.1016/j.anucene.2016.09.047
  3. C. Degueldre, J. Paratte, Concepts for an inert matrix fuel, an overview, J. Nucl. Mater. 274 (1999) 1-6. https://doi.org/10.1016/S0022-3115(99)00060-4
  4. H. Kleykamp, Selection of materials as diluents for burning of plutonium fuels in nuclear reactors, J. Nucl. Mater. 275 (1999) 1-11. https://doi.org/10.1016/S0022-3115(99)00144-0
  5. V. Anastasov, M. Betti, F. Boisson, F. Depisch, F. Houlbreque, R. Jeffree, I. Khamis, S. Lattemann, J. Miquel, S. Nisan, Status of Minor Actinide Fuel Development, IAEA Nuclear energy series No, 2009. NF-T-4.6.
  6. F. Sokolov, H. Nawada, Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors, International Atomic Energy Agency, 2006, p. 1.
  7. P. Raison, R. Haire, Structural investigation of the pseudo-ternary system AmO2eCm2O3eZrO2 as potential materials for transmutation, J. Nucl. Mater. 320 (2003) 31-35. https://doi.org/10.1016/S0022-3115(03)00165-X
  8. C. Degueldre, Zirconia inert matrix for plutonium utilisation and minor actinides disposition in reactors, J. Alloys Compd. 444 (2007) 36-41. https://doi.org/10.1016/j.jallcom.2006.11.203
  9. C. Nandi, D. Jain, V. Grover, K. Krishnan, J. Banerjee, A. Prakash, K. Khan, A. Tyagi, ZrO2-NdO1.5 system: investigations of phase relation and thermophysical properties, Mater. Des. 121 (2017) 101-108. https://doi.org/10.1016/j.matdes.2017.02.030
  10. C. Nandi, D. Jain, V. Grover, R. Dawar, S. Kaity, A. Prakash, A. Tyagi, Zr0.70[Y1-xNdx]0.30O1.85 as a potential candidate for inert matrix fuel: structural and thermophysical property investigations, J. Nucl. Mater. 510 (2018) 178-186. https://doi.org/10.1016/j.jnucmat.2018.08.008
  11. C. Nandi, V. Grover, P. Kulriya, A. Poswal, A. Prakash, K. Khan, D. Avasthi, A. Tyagi, Structural response of Nd-stabilized zirconia and its composite under extreme conditions of swift heavy ion irradiation, J. Nucl. Mater. 499 (2018) 216-224. https://doi.org/10.1016/j.jnucmat.2017.11.017
  12. M. Patel, V. Vijayakumar, S. Kailas, D. Avasthi, J. Pivin, A. Tyagi, Structural modifications in pyrochlores caused by ions in the electronic stopping regime, J. Nucl. Mater. 380 (2008) 93-98. https://doi.org/10.1016/j.jnucmat.2008.07.007
  13. G.R. Lumpkin, M. Pruneda, S. Rios, K.L. Smith, K. Trachenko, K.R. Whittle, N.J. Zaluzec, Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds, J. Solid State Chem. 180 (2007) 1512-1518. https://doi.org/10.1016/j.jssc.2007.01.028
  14. C. Nandi, D. Jain, V. Grover, R. Dawar, S. Kaity, A. Prakash, A. Tyagi, Zr0.70[Y1-xNdx]0.30O1.85 as a potential candidate for inert matrix fuel: structural and thermophysical property investigations, J. Nucl. Mater. 510 (2018) 178-186. https://doi.org/10.1016/j.jnucmat.2018.08.008
  15. Z.-G. Liu, J.-H. Ouyang, B.-H. Wang, Y. Zhou, J. Li, Preparation and thermophysical properties of NdxZr1-xO2-x/2 (x= 0.1, 0.2, 0.3, 0.4, 0.5) ceramics, J. Alloys Compd. 466 (2008) 39-44. https://doi.org/10.1016/j.jallcom.2007.11.147
  16. S. Lutique, R. Konings, V. Rondinella, J. Somers, T. Wiss, The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlorebased inert matrix fuel, J. Alloys Compd. 352 (2003) 1-5. https://doi.org/10.1016/S0925-8388(02)01113-1
  17. P. Medvedev, M. Lambregts, M. Meyer, Thermal conductivity and acid dissolution behavior of MgO-ZrO2 ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 349 (2006) 167-177. https://doi.org/10.1016/j.jnucmat.2005.10.009
  18. S. Miwa, M. Osaka, Oxidation and reduction behaviors of a prototypic MgO-PuO2-x inert matrix fuel, J. Nucl. Mater. 487 (2017) 1-4. https://doi.org/10.1016/j.jnucmat.2017.01.048
  19. S. Yates, K. McClellan, J. Nino, The effect of processing on the thermal diffusivity of MgO-Nd2Zr2O7 composites for inert matrix materials, J. Nucl. Mater. 393 (2009) 203-211. https://doi.org/10.1016/j.jnucmat.2009.06.006
  20. P. Medvedev, S. Frank, T. O'Holleran, M. Meyer, Dual phase MgO-ZrO2 ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 342 (1-3) (2005) 48-62. https://doi.org/10.1016/j.jnucmat.2005.03.017
  21. J. Jung, H. Runge, The compatibility of basalt and MgO with liquid sodium, Liquid metal engineering and technology. 3 v, in: Proceedings of the 3. International Conference Held in Oxford on 9-13 April, 1984.
  22. A. Nelson, M. Giachino, J. Nino, K. McClellan, Effect of composition on thermal conductivity of MgO-Nd2Zr2O7 composites for inert matrix materials, J. Nucl. Mater. 444 (2014) 385-392. https://doi.org/10.1016/j.jnucmat.2013.10.033
  23. E. Neeft, K. Bakker, R. Schram, R. Conrad, R. Konings, The EFTTRA-T3 irradiation experiment on inert matrix fuels, J. Nucl. Mater. 320 (2003) 106-116. https://doi.org/10.1016/S0022-3115(03)00176-4
  24. N. Chauvin, T. Albiol, R. Mazoyer, J. Noirot, D. Lespiaux, J. Dumas, C. Weinberg, J. Menard, J. Ottaviani, In-pile studies of inert matrices with emphasis on magnesia and magnesium aluminate spinel, J. Nucl. Mater. 274 (1999) 91-97. https://doi.org/10.1016/S0022-3115(99)00080-X
  25. G. Prasad, V. Sinha, P. Hegde, Development and fabrication of LEU plate fuel for modified core of APSARA reactor, BARC Newsletter 21 (2012).
  26. P. Dehaudt, A. Mocellin, G. Eminet, L. Caillot, G. Delette, M. Bauer, I. Viallard, Composite Fuel Behaviour under and after Irradiation, 1997. IAEA-TECDOC-970.
  27. N. Chauvin, T. Albiol, R. Mazoyer, J. Noirot, D. Lespiaux, J. Dumas, C. Weinberg, J. Menard, J. Ottaviani, In-pile studies of inert matrices with emphasis on magnesia and magnesium aluminate spinel, J. Nucl. Mater. 274 (1999) 91-97. https://doi.org/10.1016/S0022-3115(99)00080-X
  28. J. RodriguezeCarvajal, Program FullProf. 2k (Version 5.00), Laboratoire Leon Brillouin, France, 2011.
  29. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751-767. https://doi.org/10.1107/S0567739476001551
  30. T. Noguchi, M. Mizuno, Liquidus curve measurements in the ZrO2-MgO system with the solar furnace, B. Chem. Soc. Jap. 41 (1968) 1583-1587. https://doi.org/10.1246/bcsj.41.1583
  31. S. Serena, M.A. Sainz, A. Caballero, Experimental determination and thermodynamic calculation of the zirconia-calcia-magnesia system at 1600, 1700, and 1750C, J. Am. Ceram. Soc. 87 (2004) 2268-2274. https://doi.org/10.1111/j.1151-2916.2004.tb07503.x
  32. D. Yong, J. Zhanpeng, Optimization and calculation of the ZrO2-MgO system, Calphad 15 (1991) 59-68. https://doi.org/10.1016/0364-5916(91)90026-G
  33. H. Scott, Phase relations in the magnesia-yttria-zirconia system, J. Australas. Ceram. Soc. 17 (1981) 16-20.
  34. T. Nielsen, M. Leipold, Thermal expansion in air of ceramic oxides to 2200 ℃, J. Am. Ceram. Soc. 46 (1963) 381-387. https://doi.org/10.1111/j.1151-2916.1963.tb11756.x
  35. I. Suzuki, Thermal expansion of periclase and olivine, and their anharmonic properties, J. Phys. Earth 23 (2) (1975) 145-159. https://doi.org/10.4294/jpe1952.23.145
  36. L. Dubrovinsky, S. Saxena, Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures, Phys. Chem. Miner. 24 (8) (1997) 547-550. https://doi.org/10.1007/s002690050070
  37. G. Fiquet, P. Richet, G. Montagnac, High-temperature thermal expansion of lime, periclase, corundum and spinel, Phys. Chem. Miner. 27 (1999) 103-111. https://doi.org/10.1007/s002690050246
  38. R.R. Reeber, K. Goessel, K. Wang, Thermal expansion and molar volume of MgO, periclase, Eur. J. Mineral 7 (1995) 1039-1047. https://doi.org/10.1127/ejm/7/5/1039
  39. A. Rao, K. Narender, Studies on thermophysical properties of CaO and MgO by g-ray attenuation, J. Thermodyn. 2014 (2014) 123478.
  40. L. Cheng, B. Yan, R. Gao, X. Liu, Z. Yang, B. Li, Y. Zhong, P. Liu, Y. Wang, M. Chu, Densification behaviour of UO2/Mo core-shell composite pellets with a reduced coefficient of thermal expansion, Ceram. Int. 46 (2020) 4730-4736. https://doi.org/10.1016/j.ceramint.2019.10.204
  41. I. Barin, G. Platzki, Thermochemical Data of Pure Substances, Wiley Online Library, 1989.
  42. D.R. Stull, H. Prophet, JANAF Thermochemical Tables, National Standard Reference Data System, 1971.
  43. J. Luo, R. Stevens, R. Taylor, Thermal diffusivity/conductivity of magnesium oxide/silicon carbide composites, J. Am. Ceram. Soc. 80 (1997) 699-704. https://doi.org/10.1111/j.1151-2916.1997.tb02887.x
  44. L. Guo, Y. Zhang, F. Ye, Phase structure evolution and thermophysical properties of nonstoichiometry Nd2-xZr2+xO7+x/2 pyrochlore ceramics, J. Am. Ceram. Soc. 98 (2015) 1013-1018. https://doi.org/10.1111/jace.13374
  45. A.J. Slifka, B.J. Filla, J. Phelps, Thermal conductivity of magnesium oxide from absolute, steady-state measurements, J. Res. Natl. Inst. Stand. Technol. 103 (1998) 357. https://doi.org/10.6028/jres.103.021
  46. R. Powell, C.Y. Ho, P.E. Liley, Thermal Conductivity of Selected Materials, US Department of Commerce, National Bureau of Standards Washington, DC, 1966.
  47. D. Stauffer, A. Aharony, Introduction to Percolation Theory, CRC press, 2018.
  48. G. Zhang, Y. Xia, H. Wang, Y. Tao, G. Tao, S. Tu, H. Wu, A percolation model of thermal conductivity for filled polymer composites, J. Compos. Mater. 44 (2010) 963-970. https://doi.org/10.1177/0021998309349690
  49. L. Kong, J. Zhang, Y. Maeda, M.G. Blackford, S. Li, G. Triani, D.J. Gregg, Novel synthesis and thermal property analysis of MgO-Nd2Zr2O7 composite, Ceram. Int. 42 (2016) 16888-16896. https://doi.org/10.1016/j.ceramint.2016.07.187
  50. Y. Kim, J. Lee, N. Kim, H.K. Yu, Thermal conductivity-controlled Zn-doped MgO/Mg(OH)2 micro-structures for high-efficiency thermo-dynamic heat energy storage, J. Asian Ceram. Soc. 8 (2020) 50-56. https://doi.org/10.1080/21870764.2019.1701221
  51. P.L. Kirillov, Thermophysical Properties of Materials for Nuclear Engineering: Tutorial for Students of Specialty Nuclear Power Plants, OBNINSK INSTITUTE FOR ATOMIC POWER ENGINEERING, 2006.