DOI QR코드

DOI QR Code

Development of Lithium Lanthanum Titanate (LLTO) Membrane Manufacturing Process for Selective Separation of Lithium Ion

리튬이온의 선택적 투과를 위한 Lithium Lanthanum Titanate계 분리막 제조 공정 개발

  • Young Il Kim (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Sang Cheol Park (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kwang Ho Shin (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • InYeong Kim (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kee-Ahn Lee (Department of Materials Science and Engineering, Inha University) ;
  • Sung-Kyun Jung (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Bin Lee (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 김영일 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 박상철 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 신광호 (울산과학기술원 에너지화학공학과) ;
  • 김인영 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 이기안 (인하대학교 신소재공학과) ;
  • 정성균 (울산과학기술원 에너지화학공학과) ;
  • 이빈 (한국생산기술연구원 한국희소금속산업기술센터)
  • Received : 2022.12.26
  • Accepted : 2023.01.31
  • Published : 2023.02.28

Abstract

The global demand for raw lithium materials is rapidly increasing, accompanied by the demand for lithiumion batteries for next-generation mobility. The batch-type method, which selectively separates and concentrates lithium from seawater rich in reserves, could be an alternative to mining, which is limited owing to low extraction rates. Therefore, research on selectively separating and concentrating lithium using an electrodialysis technique, which is reported to have a recovery rate 100 times faster than the conventional methods, is actively being conducted. In this study, a lithium ion selective membrane is prepared using lithium lanthanum titanate, an oxide-based solid electrolyte material, to extract lithium from seawater, and a large-area membrane manufacturing process is conducted to extract a large amount of lithium per unit time. Through the developed manufacturing process, a large-area membrane with a diameter of approximately 20 mm and relative density of 96% or more is manufactured. The lithium extraction behavior from seawater is predicted by measuring the ionic conductivity of the membrane through electrochemical analysis.

Keywords

Acknowledgement

본 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회 선행 융합연구사업(No. CPS22061-100)의 지원을 받아 수행되었습니다.

References

  1. W. A. Hart, O. F. Beumel and T.P . Whaley: The Chemistry of Lithium Sodium Potassium Cesium and Francium, Pergmum Press, New York (1973) 1.
  2. P. K. Choubey, M. S. Kim, R. R. Srivastava, J. C. Lee and J. Y. Lee: Miner. Eng., 89 (2016) 119.
  3. J. W. Choi and D. Aurbach: Nat. Rev. Mater., 1 (2016) 16013.
  4. Y. M. Lin, K. C. Klavetter, P. R. Abel, N. C. Davy, J. L. Snider, A. Heller and C. Buddie Mullins: Chem. Commun., 48 (2012) 7268.
  5. X. Liang, Q. Pang, I. R. Kochetkov, M. S. Sempere, H. Huang, X. Sun and L. F. Nazar: Nat. Energy, 2 (2017) 17119.
  6. Y. Huang, X. Wu, L. Nie, S. Chen, Z. Sun, Y. He and W. Liu: Solid State Ion., 345 (2020) 115171.
  7. K. Sasaki, R. Hiraka, H. Takahashi and K. Shin-mura: Fusion Eng. Des., 170 (2021) 112500.
  8. U. S. Geological Survey: Mineral Commodity Summaries (2022), Minerals Yearbook (2010).
  9. P. K. Choubey, K.-S. Chung, M.-S. Kim, J.-C. Lee and R. R. Srivastava: Miner. Eng., 110 (2017) 104.
  10. U. S. Geological Survey: Mineral Commodity Summaries (2017).
  11. K. Yoshizuka, A. Kitajou and M. Holba: Ars. Separatoria. Acta, 4 (2006) 78.
  12. A. Siekierka, B. Tomaszewska and M. Bryjak: Desalination, 436 (2018) 8.
  13. J. F. Song, L. D. Nghiem, X. M. Li and T. He: Water Res. Technol., 3 (2017) 593.
  14. P. K. Choubey, K. S. Chung, M. S. Kim, J. C. Lee and R. R. Srivastava: Miner. Eng., 110 (2017) 104.
  15. C. Liu, Y. Li, D. Lin, P. C. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui and S. Chu: Joule, 4 (2020) 1459.
  16. H. J. Hong, T. Ryu, I. S. Park, M. Kim, J. Shin, B. G. Kim and K.-S. Chung: Chem. Eng. J., 337 (2018) 455.
  17. S. Yang, F. Zhang, H. Ding, P. He and H. Zhou: Joule, 2 (2018) 1648.
  18. B. S. Oh, S. G. Oh, Y. J. Jung, Y. Y. Hwang, J. W. Kang and I. S. Kim: Desalin. Water Treat., 18 (2012) 245.
  19. T. Hoshino: Desalination, 359 (2015) 59.
  20. T. Hoshino: Desalination, 317 (2013) 11.
  21. T. Hoshino: Fusion Eng. Des., 88 (2013) 2956. https://doi.org/10.1016/j.fusengdes.2013.06.009
  22. T. Xu, M. Zhao, Z. Su, W. Duan, Y. Shi, Z. Li, V. G. Pol and X. Song: J. Power Sources, 481 (2021) 229110.
  23. K. Hayamizu, S. Seki and T. Haishi: Solid State Ion., 326 (2018) 37. https://doi.org/10.1016/j.ssi.2018.09.009
  24. J. E. O. Bohnkea, A. Veronb, J. L. Fourqueta, J. Y. Buzareb, P. Florianc and D. Massiotc: Solid State Ion., 109 (1992) 25.
  25. W. Arnold, D. A. Buchberger, Y. Li, M. Sunkara, T. Druffel and H. Wang: J. Power Sources, 464 (2020) 228158.
  26. Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo and Y. Huang: Adv. Mater., 30 (2018) 1705702.
  27. R. Chen, Q. Li, X. Yu, L. Chen and H. Li: Chem. Rev., 120 (2020) 6820.
  28. A. Banerjee, X. Wang, C. Fang, E. A. Wu and Y. S. Meng: Chem. Rev., 120 (2020) 6878.
  29. R. Chen, A. M. Nolan, J. Lu, J. Wang, X. Yu, Y. Mo, L. Chen, X. Huang and H. Li: Joule, 4 (2020) 812.
  30. H. Chung and B. Kang: Chem. Mater., 29 (2017) 8611.
  31. W. Xia, B. Xu, H. Duan, X. Tang, Y. Guo, H. Kang, H. Li and H. Liu: J. Am. Ceram. Soc., 100 (2017) 2832.
  32. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta and M. Wakihara: Solid State Commun., 86 (1993) 689.
  33. C. H. Chen and K. AmineK: Solid State Ion., 144 (2001) 51. https://doi.org/10.1016/S0167-2738(01)00884-0
  34. A. I. Ruiz, M. L. Lopez, M. L. Veiga and C. Pico: Solid State Ion., 112 (1998) 291. https://doi.org/10.1016/S0167-2738(98)00220-3
  35. K. Hayamizu, S. Seki and T. Haishi: Solid State Ion., 326 (2018) 37. https://doi.org/10.1016/j.ssi.2018.09.009
  36. Z. Yao, K. Zhu, J. Zhang, J. Li, X. Li, J. Wang, K. Yan and J. Liu: J. Electron. Mater., 51 (2022) 736. https://doi.org/10.1007/s11664-021-09331-7
  37. Z. Ji, Q. Chen, J. Yuan, J. Liu, Y. Zhao and W. Feng: Sep. Purif. Technol., 172 (2017) 168.
  38. Z. Li, C. Li, X. Liu, L. Cao, P. Li, R. Wei, X. Li, D. Guo, K. Huang and Z. Lai: Energy Environ. Sci., 14 (2021) 3152.
  39. Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li and D. Chu: Crit. Rev. Solid State Mater. Sci., 44 (2019) 265.
  40. H. Kawai and J. Kuwano: J. Electrochem. Soc., 141 (1994) L78.
  41. C. Cooper, A. C. Sutorik, J. Wright, E. A. Luoto III, G. Gilde and J. Wolfenstine: Adv. Eng. Mater., 16 (2014) 755.
  42. National Center for Biotechnology Information: PubChem Element Summary for AtomicNumber 3, Lithium (2021).
  43. L. Xu, L. Zhang, Y. Hu and L. Luo: Nano Energy, 92 (2022) 106758. https://doi.org/10.1016/j.nanoen.2021.106758
  44. Y. Q. Cheng, Z. H. Bi, A. Huq, M. Feygenson, C. A. Bridges, M. P. Paranthaman and B. G. Sumpter: J. Mater. Chem., 2 (2014) 2418.
  45. K. Ohara, Y. Kawakita, L. Temleitner, L. Pusztai, S. Kohara, A. Jono, H. Shimakura, N. Inoue and S. Takeda: Phys. Status Solidi C, 6 (2009) 1004.
  46. Y. Harada, T. Ishigaki, H. Kawai and J. Kuwano: Solid State Ion., 108 (1998) 407. https://doi.org/10.1016/S0167-2738(98)00070-8
  47. T. Teranishi, M. Yamamoto, H. Hayashi and A. Kishimoto: Solid State Ion., 243 (2013) 18. https://doi.org/10.1016/j.ssi.2013.04.014
  48. H. T. Chung, J. G. Kim and H. G. Kim: Solid State Ion., 107 (1998) 153. https://doi.org/10.1016/S0167-2738(97)00525-0
  49. T. Okumura, T. Ina, Y. Orikasa, H. Arai, Y. Uchimotoa and Z. Ogumi: J. Mater. Chem., 21 (2011) 10061.
  50. C. Bernuy-Lopez, W. Manalastas, J. M. Lopez del Amo, A. Aguadero, F. Aguesse and J. A. Kilner: Chem. Mater., 26 (2014) 3610.
  51. Y. Li, J. T. Han, C. A. Wang, H. Xie and J. B. Goodenough: J. Mater. Chem., 22 (2012) 15357.
  52. C. Deviannapoorani, L. Dhivya, S. Ramakumar and R. Murugan: J. Power Sources, 240 (2013) 18.
  53. C. Cao, Z. Li, X. Wang, X. Zhao and W. Han: Front. Energy Res., 2 (2014) 25.
  54. W. H. Baur, J. R. Dygas, D. H. Whitmore and J. Faber: Solid State ion., 18 (1986) 935. https://doi.org/10.1016/0167-2738(86)90290-0
  55. A. Hayashi, A. Sakuda and M. Tatsumisago: Front. Energy Res., 4 (2016) 25.
  56. L. Zhou, A. Assoud, A. Shyamsunder, A. Huq, Q. Zhang, P. Hartmann, J. Kulisch and L. F. Nazar: Chem. Mater., 31 (2019) 7801.