Browse > Article
http://dx.doi.org/10.1016/j.net.2020.07.022

Characterization and thermophysical properties of Zr0.8Nd0.2O1.9-MgO composite  

Nandi, Chiranjit (Radiometallurgy Division, Bhabha Atomic Research Centre)
Kaity, Santu (Radiometallurgy Division, Bhabha Atomic Research Centre)
Jain, Dheeraj (Chemistry Division, Bhabha Atomic Research Centre)
Grover, V. (Chemistry Division, Bhabha Atomic Research Centre)
Prakash, Amrit (Radiometallurgy Division, Bhabha Atomic Research Centre)
Behere, P.G. (Radiometallurgy Division, Bhabha Atomic Research Centre)
Publication Information
Nuclear Engineering and Technology / v.53, no.2, 2021 , pp. 603-610 More about this Journal
Abstract
The major drawback of zirconia-based materials, in view of their applications as targets for minor actinide transmutation, is their poor thermal conductivity. The addition of MgO, which has high thermal conductivity, to zirconia-based materials is expected to improve their thermal conductivity. On these grounds, the present study aims at phase characterization and thermophysical property evaluation of neodymium-substituted zirconia (Zr0.8Nd0.2O1.9; using Nd2O3 as a surrogate for Am2O3) and its composites with MgO. The composite was prepared by a solid-state reaction of Zr0.8Nd0.2O1.9 (synthesized by gel combustion) and commercial MgO powders at 1773 K. Phase characterization was carried out by X-ray diffraction and the microstructural investigation was performed using a scanning electron microscope equipped with energy dispersive spectroscopy. The linear thermal expansion coefficient of Zr0.8Nd0.2O1.9 increases upon composite formation with MgO, which is attributed to a higher thermal expansivity of MgO. Similarly, specific heat also increases with the addition of MgO to Zr0.8Nd0.2O1.9. Thermal conductivity was calculated from measured thermal diffusivity, temperature-dependent density and specific heat values. Thermal conductivity of Zr0.8Nd0.2O1.9-MgO (50 wt%) composite is more than that of typical UO2 fuel, supporting the potential of Zr0.8Nd0.2O1.9-MgO composites as target materials for minor actinides transmutation.
Keywords
$Zr_{0.8}Nd_{0.2}O_{1.9}-MgO$ composites; XRD; Thermal expansion; Specific heat; Thermal conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z.-G. Liu, J.-H. Ouyang, B.-H. Wang, Y. Zhou, J. Li, Preparation and thermophysical properties of NdxZr1-xO2-x/2 (x= 0.1, 0.2, 0.3, 0.4, 0.5) ceramics, J. Alloys Compd. 466 (2008) 39-44.   DOI
2 P. Medvedev, M. Lambregts, M. Meyer, Thermal conductivity and acid dissolution behavior of MgO-ZrO2 ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 349 (2006) 167-177.   DOI
3 A. Nelson, M. Giachino, J. Nino, K. McClellan, Effect of composition on thermal conductivity of MgO-Nd2Zr2O7 composites for inert matrix materials, J. Nucl. Mater. 444 (2014) 385-392.   DOI
4 N. Chauvin, T. Albiol, R. Mazoyer, J. Noirot, D. Lespiaux, J. Dumas, C. Weinberg, J. Menard, J. Ottaviani, In-pile studies of inert matrices with emphasis on magnesia and magnesium aluminate spinel, J. Nucl. Mater. 274 (1999) 91-97.   DOI
5 G. Prasad, V. Sinha, P. Hegde, Development and fabrication of LEU plate fuel for modified core of APSARA reactor, BARC Newsletter 21 (2012).
6 N. Chauvin, T. Albiol, R. Mazoyer, J. Noirot, D. Lespiaux, J. Dumas, C. Weinberg, J. Menard, J. Ottaviani, In-pile studies of inert matrices with emphasis on magnesia and magnesium aluminate spinel, J. Nucl. Mater. 274 (1999) 91-97.   DOI
7 T. Noguchi, M. Mizuno, Liquidus curve measurements in the ZrO2-MgO system with the solar furnace, B. Chem. Soc. Jap. 41 (1968) 1583-1587.   DOI
8 G. Fiquet, P. Richet, G. Montagnac, High-temperature thermal expansion of lime, periclase, corundum and spinel, Phys. Chem. Miner. 27 (1999) 103-111.   DOI
9 T. Nielsen, M. Leipold, Thermal expansion in air of ceramic oxides to 2200 ℃, J. Am. Ceram. Soc. 46 (1963) 381-387.   DOI
10 L. Dubrovinsky, S. Saxena, Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures, Phys. Chem. Miner. 24 (8) (1997) 547-550.   DOI
11 L. Cheng, B. Yan, R. Gao, X. Liu, Z. Yang, B. Li, Y. Zhong, P. Liu, Y. Wang, M. Chu, Densification behaviour of UO2/Mo core-shell composite pellets with a reduced coefficient of thermal expansion, Ceram. Int. 46 (2020) 4730-4736.   DOI
12 S. Serena, M.A. Sainz, A. Caballero, Experimental determination and thermodynamic calculation of the zirconia-calcia-magnesia system at 1600, 1700, and 1750C, J. Am. Ceram. Soc. 87 (2004) 2268-2274.   DOI
13 H. Shahbunder, A.A. Al Qaaod, E.A. Amin, S. El-Kameesy, Effects of Pu and MA uniform and nonuniform distributions on subcritical multiplication of TRIGA Mark II ADS reactor, Ann. Nucl. Energy 94 (2016) 332-337.   DOI
14 H. Kleykamp, Selection of materials as diluents for burning of plutonium fuels in nuclear reactors, J. Nucl. Mater. 275 (1999) 1-11.   DOI
15 E. Neeft, K. Bakker, R. Schram, R. Conrad, R. Konings, The EFTTRA-T3 irradiation experiment on inert matrix fuels, J. Nucl. Mater. 320 (2003) 106-116.   DOI
16 P. Medvedev, S. Frank, T. O'Holleran, M. Meyer, Dual phase MgO-ZrO2 ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 342 (1-3) (2005) 48-62.   DOI
17 H. Scott, Phase relations in the magnesia-yttria-zirconia system, J. Australas. Ceram. Soc. 17 (1981) 16-20.
18 J. RodriguezeCarvajal, Program FullProf. 2k (Version 5.00), Laboratoire Leon Brillouin, France, 2011.
19 C. Nandi, D. Jain, V. Grover, R. Dawar, S. Kaity, A. Prakash, A. Tyagi, Zr0.70[Y1-xNdx]0.30O1.85 as a potential candidate for inert matrix fuel: structural and thermophysical property investigations, J. Nucl. Mater. 510 (2018) 178-186.   DOI
20 C. Degueldre, J. Paratte, Concepts for an inert matrix fuel, an overview, J. Nucl. Mater. 274 (1999) 1-6.   DOI
21 F. Sokolov, H. Nawada, Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors, International Atomic Energy Agency, 2006, p. 1.
22 P. Raison, R. Haire, Structural investigation of the pseudo-ternary system AmO2eCm2O3eZrO2 as potential materials for transmutation, J. Nucl. Mater. 320 (2003) 31-35.   DOI
23 C. Nandi, D. Jain, V. Grover, R. Dawar, S. Kaity, A. Prakash, A. Tyagi, Zr0.70[Y1-xNdx]0.30O1.85 as a potential candidate for inert matrix fuel: structural and thermophysical property investigations, J. Nucl. Mater. 510 (2018) 178-186.   DOI
24 M. Patel, V. Vijayakumar, S. Kailas, D. Avasthi, J. Pivin, A. Tyagi, Structural modifications in pyrochlores caused by ions in the electronic stopping regime, J. Nucl. Mater. 380 (2008) 93-98.   DOI
25 G.R. Lumpkin, M. Pruneda, S. Rios, K.L. Smith, K. Trachenko, K.R. Whittle, N.J. Zaluzec, Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds, J. Solid State Chem. 180 (2007) 1512-1518.   DOI
26 R. Powell, C.Y. Ho, P.E. Liley, Thermal Conductivity of Selected Materials, US Department of Commerce, National Bureau of Standards Washington, DC, 1966.
27 J. Jung, H. Runge, The compatibility of basalt and MgO with liquid sodium, Liquid metal engineering and technology. 3 v, in: Proceedings of the 3. International Conference Held in Oxford on 9-13 April, 1984.
28 D.R. Stull, H. Prophet, JANAF Thermochemical Tables, National Standard Reference Data System, 1971.
29 J. Luo, R. Stevens, R. Taylor, Thermal diffusivity/conductivity of magnesium oxide/silicon carbide composites, J. Am. Ceram. Soc. 80 (1997) 699-704.   DOI
30 A.J. Slifka, B.J. Filla, J. Phelps, Thermal conductivity of magnesium oxide from absolute, steady-state measurements, J. Res. Natl. Inst. Stand. Technol. 103 (1998) 357.   DOI
31 G. Zhang, Y. Xia, H. Wang, Y. Tao, G. Tao, S. Tu, H. Wu, A percolation model of thermal conductivity for filled polymer composites, J. Compos. Mater. 44 (2010) 963-970.   DOI
32 L. Kong, J. Zhang, Y. Maeda, M.G. Blackford, S. Li, G. Triani, D.J. Gregg, Novel synthesis and thermal property analysis of MgO-Nd2Zr2O7 composite, Ceram. Int. 42 (2016) 16888-16896.   DOI
33 P.L. Kirillov, Thermophysical Properties of Materials for Nuclear Engineering: Tutorial for Students of Specialty Nuclear Power Plants, OBNINSK INSTITUTE FOR ATOMIC POWER ENGINEERING, 2006.
34 P. Dehaudt, A. Mocellin, G. Eminet, L. Caillot, G. Delette, M. Bauer, I. Viallard, Composite Fuel Behaviour under and after Irradiation, 1997. IAEA-TECDOC-970.
35 L. Guo, Y. Zhang, F. Ye, Phase structure evolution and thermophysical properties of nonstoichiometry Nd2-xZr2+xO7+x/2 pyrochlore ceramics, J. Am. Ceram. Soc. 98 (2015) 1013-1018.   DOI
36 C. Nandi, D. Jain, V. Grover, K. Krishnan, J. Banerjee, A. Prakash, K. Khan, A. Tyagi, ZrO2-NdO1.5 system: investigations of phase relation and thermophysical properties, Mater. Des. 121 (2017) 101-108.   DOI
37 D. Yong, J. Zhanpeng, Optimization and calculation of the ZrO2-MgO system, Calphad 15 (1991) 59-68.   DOI
38 I. Suzuki, Thermal expansion of periclase and olivine, and their anharmonic properties, J. Phys. Earth 23 (2) (1975) 145-159.   DOI
39 R.R. Reeber, K. Goessel, K. Wang, Thermal expansion and molar volume of MgO, periclase, Eur. J. Mineral 7 (1995) 1039-1047.   DOI
40 I. Barin, G. Platzki, Thermochemical Data of Pure Substances, Wiley Online Library, 1989.
41 D. Stauffer, A. Aharony, Introduction to Percolation Theory, CRC press, 2018.
42 S. Lutique, R. Konings, V. Rondinella, J. Somers, T. Wiss, The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlorebased inert matrix fuel, J. Alloys Compd. 352 (2003) 1-5.   DOI
43 Y. Kim, J. Lee, N. Kim, H.K. Yu, Thermal conductivity-controlled Zn-doped MgO/Mg(OH)2 micro-structures for high-efficiency thermo-dynamic heat energy storage, J. Asian Ceram. Soc. 8 (2020) 50-56.   DOI
44 R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751-767.   DOI
45 A. Rao, K. Narender, Studies on thermophysical properties of CaO and MgO by g-ray attenuation, J. Thermodyn. 2014 (2014) 123478.
46 G. Alonso, E. Martinez, J.R. Ramirez, H. Hernandez, Radiotoxicity implications and reduction strategies of minor actinide in a boiling water reactor, Ann. Nucl. Energy 99 (2017) 410-420.   DOI
47 V. Anastasov, M. Betti, F. Boisson, F. Depisch, F. Houlbreque, R. Jeffree, I. Khamis, S. Lattemann, J. Miquel, S. Nisan, Status of Minor Actinide Fuel Development, IAEA Nuclear energy series No, 2009. NF-T-4.6.
48 C. Degueldre, Zirconia inert matrix for plutonium utilisation and minor actinides disposition in reactors, J. Alloys Compd. 444 (2007) 36-41.   DOI
49 C. Nandi, V. Grover, P. Kulriya, A. Poswal, A. Prakash, K. Khan, D. Avasthi, A. Tyagi, Structural response of Nd-stabilized zirconia and its composite under extreme conditions of swift heavy ion irradiation, J. Nucl. Mater. 499 (2018) 216-224.   DOI
50 S. Miwa, M. Osaka, Oxidation and reduction behaviors of a prototypic MgO-PuO2-x inert matrix fuel, J. Nucl. Mater. 487 (2017) 1-4.   DOI
51 S. Yates, K. McClellan, J. Nino, The effect of processing on the thermal diffusivity of MgO-Nd2Zr2O7 composites for inert matrix materials, J. Nucl. Mater. 393 (2009) 203-211.   DOI