Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.1.70

Granulations of SiOx Nanoparticles to Improve Electrochemical Properties as a Li-Ion Battery's Anode  

Lee, Bora (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research)
Lee, Jae Young (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research)
Jang, Boyun (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research)
Kim, Joonsoo (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research)
Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.1, 2019 , pp. 70-77 More about this Journal
Abstract
$SiO_x$ nanoparticles were granulated, and their microstructures and effects on electrochemical behaviors were investigated. In spite of the promising electrochemical performance of $SiO_x$, nanoparticles have limitations such as high surface area, low density, and difficulty in handling during slurry processing. Granulation can be one solution. In this study, pelletizing and annealing were conducted to create particles with sizes of several decades of micron. Decrease in surface area directly influences the initial charge and discharge process when granules are applied as anode materials for Li-ion batteries. Lower surface area is key to decreasing the amount of irreversible phase-formation, such as $Li_2Si_2O_5$, $Li_2SiO_3$ and $Li_4SiO_4$, as well as forming the solid electrolyte interface. Additionally, aggregation of nanoparticles is required to obtain further enhancement of the electrochemical behavior due to restrictions that there be no $Li_4SiO_4$-related reaction during the first discharge process.
Keywords
$SiO_x$; Nanoparticles; Granulation; Li-ion battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, Adv. Mater., 25, 4966 (2013). [DOI: https://doi.org/10.1002/adma.201301795]   DOI
2 I. W. Seong, K. T. Kim, and W. Y. Yoon, J. Power Sources, 189, 511 (2009). [DOI: https://doi.org/10.1016/j.jpowsour.2008.11.029]   DOI
3 A. Netz, R. A. Huggins, and W. Weppner, J. Power Sources, 119, 95 (2003). [DOI: https://doi.org/10.1016/S0378-7753(03)00132-0]   DOI
4 X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, Adv. Energy Mater., 1, 1079 (2011). [DOI: https://doi.org/10.1002/aenm.201100426]   DOI
5 G. Zhao, L. Zhang, Y. Meng, N. Zhang, and K. Sun, Mater. Lett., 96, 170 (2013). [DOI: https://doi.org/10.1016/j.matlet.2013.01.073]   DOI
6 Q. Si, M. Matsui, T. Horiba, O. Yamamoto, Y. Takeda, N. Seki, and N. Imanishi, J. Power Sources, 241, 744 (2013). [DOI: https://doi.org/10.1016/j.jpowsour.2013.05.090]   DOI
7 Z. Zhang, Y. Wang, Q. Tan, D. Li, Y. Chen, Z. Zhong, and F. Su, Nanoscale, 6, 371 (2014). [DOI: https://doi.org/10.1039/C3NR04323A]   DOI
8 B. Y. Jang, J. S. Lee, and J. S. Kim, J. Nanosci. Nanotechnol., 13, 3690 (2013). [DOI: https://doi.org/10.1166/jnn.2013.7277]   DOI
9 J. Y. Li, Q. Xu, G. Li, Y. X. Yin, L. J. Wan, and Y. G. Guo, Mater. Chem. Front., 1, 1691 (2017). [DOI: https://doi.org/10.1039/C6QM00302H]   DOI
10 X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano, 6, 1522 (2012). [DOI: https://doi.org/10.1021/nn204476h]   DOI
11 F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, and L. Chen, J. Electrochem. Soc., 162, A2509 (2015). [DOI: https://doi.org/10.1149/2.0131514jes]   DOI
12 D. C. Lin, Z. Lu, P. C. Hsu, H. R. Lee, N. Liu, J. Zhao, H. Wang, C. Liu, and Y. Cui, Energy Environ. Sci., 8, 2371 (2015). [DOI: https://doi.org/10.1039/C5EE01363A]   DOI
13 M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, Appl. Phys. Lett., 80, 661 (2002). [DOI: https://doi.org/10.1063/1.1433906]   DOI
14 L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, J. Phys.: Condens. Matter, 15, S2887 (2003). [DOI: https://stacks.iop.org/JPhysCM/15/S2887]   DOI
15 K. Kamitsuji, S. Ueno, H. Suzuki, Y. Kimura, T. Sato, T. Tanigaki, O. Kido, M. Kurumada, and C. Kaito, Astron. Astrophys., 422, 975 (2004). [DOI: https://doi.org/10.1051/0004-6361:20034353]   DOI
16 Z. Zhao, F. Xue, Y. Mao, N. Chen, and T. Wang, Opt. Fiber Technol., 41, 193 (2018). [DOI: https://doi.org/10.1016/j.yofte.2018.01.016]   DOI
17 M. Adachi, S. Fujii, M. Kiyama, Y. Yamamoto, S. Nishino, M. Omprakash, A. Yamamoto, A. Makino, and T. Takeuchi, Materials Today: Proceedings, 5, 10291 (2018). [DOI: https://doi.org/10.1016/j.matpr.2017.12.276]   DOI
18 C. Hoeltgen, J. E. Lee, and B. Y. Jang, Electrochim. Acta, 222, 535 (2016) [DOI: https://doi.org/10.1016/j.electacta.2016.11.006].   DOI
19 S. Periasamy, S. Venkidusamy, R. Venkatesan, J. Mayandi, J. Pearce, J. H. Selj, and R. Veerabahu, Z. Phys. Chem., 231, 1585 (2017). [DOI: https://doi.org/10.1515/zpch-2016-0961]   DOI
20 K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, and S. Shimosaki, J. Power Sources, 329, 462 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2016.08.110]   DOI
21 V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011). [DOI: https://doi.org/10.1039/C1EE01598B]   DOI
22 L. F. Cui, L. B. Hu, J. W. Choi, and Y. Cui, ACS Nano, 4, 3671 (2010). [DOI: https://doi.org/10.1021/nn100619m]   DOI
23 K. Ogata, E. Salager, C. J. Kerr, A. E. Fraser, C. Ducati, A. J. Morris, S. Hofmann, and C. P. Grey, Nat. Commun., 5, 3217 (2014). [DOI: https://doi.org/10.1038/ncomms4217]   DOI