• Title/Summary/Keyword: sojourn

Search Result 82, Processing Time 0.022 seconds

Sojourn Time Analysis Using SRPT Scheduling for Heterogeneous Multi-core Systems (Heterogeneous 멀티코어 시스템에서 SRPT 스케줄링을 사용한 체류 시간 분석)

  • Yang, Bomi;Park, Hyunjae;Choi, Young-June
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.223-231
    • /
    • 2017
  • In this paper, we study the performance of recently popular multi-core systems in mobiles. Previous research on the multi-core performance usually focused on the desktop PC. However, there is enough scope to further analyze heterogeneous multi-core systems. Therefore, by extending homogeneous multi-core systems, we analyze the heterogeneous multi-core systems using Size Interval Task Allocation (SITA) for job allocation, and Shortest Remaining Processing Time (SRPT) scheduling, for each individual core. We propose a new computational method regarding the cutoff point, which is crucial in analyzing SITA, by calculating the sojourn time. This facilitate easy and accurate calculation of the sojourn time. We further confirm our analysis through the ESESC simulator that provides actual measurements.

Queue Lengths and Sojourn Time Analysis of Discrete-time BMAP/G/1 Queue under the Workload Control (일량제어정책을 갖는 이산시간 BMAP/G/1 대기행렬의 고객수와 체재시간 분석)

  • Se Won Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.63-76
    • /
    • 2024
  • In this study, we analyzed queue length and sojourn time of discrete-time BMAP/G/1 queues under the workload control. Group customers (packets) with correlations arrive at the system following a discrete-time Markovian arrival process. The server starts busy period when the total service time of the arrived customers exceeds a predetermined workload threshold D and serves customers until the system is empty. From the analysis of workload and waiting time, distributions of queue length at the departure epoch and arbitrary time epoch and system sojourn time are derived. We also derived the mean value as a performance measure. Through numerical examples, we confirmed that we can obtain results represented by complex forms of equations, and we verified the validity of the theoretical values by comparing them with simulation results. From the results, we can obtain key performance measures of complex systems that operate similarly in various industrial fields and to analyze various optimization problems.

Impact Evaluation of DDoS Attacks on DNS Cache Server Using Queuing Model

  • Wang, Zheng;Tseng, Shian-Shyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.895-909
    • /
    • 2013
  • Distributed Denial-of-Service (DDoS) attacks towards name servers of the Domain Name System (DNS) have threaten to disrupt this critical service. This paper studies the vulnerability of the cache server to the flooding DNS query traffic. As the resolution service provided by cache server, the incoming DNS requests, even the massive attacking traffic, are maintained in the waiting queue. The sojourn of requests lasts until the corresponding responses are returned from the authoritative server or time out. The victim cache server is thus overloaded by the pounding traffic and thereafter goes down. The impact of such attacks is analyzed via the model of queuing process in both cache server and authoritative server. Some specific limits hold for this practical dual queuing process, such as the limited sojourn time in the queue of cache server and the independence of the two queuing processes. The analytical results are presented to evaluate the impact of DDoS attacks on cache server. Finally, numerical results are provided for further analysis.

Study of Dynamic Polling in the IEEE 802.11 PCF

  • Kim, Che-Soong;Lyakhov, Andrey
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.2
    • /
    • pp.140-150
    • /
    • 2008
  • Point Coordination Function (PCF) of the IEEE 802.11 protocol providing a centrally-controlled polling-based multiple access to a wireless channel is very efficient in high load conditions. However, its performance degrades with increasing the number of terminals and decreasing the load, because of wastes related to unsuccessful polling attempts. To solve the problem, we propose and study analytically the generic dynamic polling policy using backoff concept. For this aim, we develop Markov models describing the network queues changes, what allows us to estimate such performance measures as the average MAC service time and the average MAC sojourn time, to show the dynamic polling efficiency and to tune optimally the backoff rule.

Sojourn Times in a Multiclass Priority Queue with Random Feedback

  • Hong, Sung-Jo;Hirayama, Tetsuji
    • Management Science and Financial Engineering
    • /
    • v.2 no.1
    • /
    • pp.123-145
    • /
    • 1996
  • We consider a priority-based multiclass queue with probabilistic feed-back. There are J service stations. Each customer belongs to one of the several priority classes, and the customers of each class arrive at each station in a Poisson process. A single server serves queued customers on a priority basis with a nonpreemptive scheduling discipline. The customers who complete their services feed back to the system instantaneously and join one of the queues of the stations or depart from the system according to a given probability. In this paper, we propose a new method to simplify the analysis of these queueing systems. By the analysis of busy periods and regenerative processes, we clarify the underlying system structure, and systematically obtain the mean for the sojourn time, i.e., the time from the arrival to the departure from the system, of a customer at every station. The mean for the number of customers queued in each station at an arbitrary time is also obtained simultaneously.

  • PDF

Performance Analysis of a Discrete-Time Two-Phase Queueing System

  • Kim, Tae-Sung;Chang, Seok-Ho;Chae, Kyung-Chul
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.238-246
    • /
    • 2003
  • This paper introduces the modeling and analysis of a discrete-time, two-phase queueing system for both exhaustive batch service and gated batch service. Packets arrive at the system according to a Bernoulli process and receive batch service in the first phase and individual services in the second phase. We derive the probability generating function (PGF) of the system size and show that it is decomposed into two PGFs, one of which is the PGF of the system size in the standard discrete-time Geo/G/1 queue without vacations. We also present the PGF of the sojourn time. Based on these PGFs, we present useful performance measures, such as the mean number of packets in the system and the mean sojourn time of a packet.

  • PDF

A Modified Velocity Estimation Scheme in AAS (Adaptive Antenna System) (AAS(적응형 안테나 시스템)에서의 이동체 속도 추정 방안)

  • Chung, Young-Uk;Choi, Yong-Hoon;Lee, Hyuk-Joon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.100-107
    • /
    • 2009
  • Velocity estimation is one of important issues for efficient system management in mobile cellular systems. In this paper, a modified velocity estimation scheme which works in Adaptive Antenna System (AAS) is proposed. The proposed scheme estimates user velocity based on moving distance information and sojourn time information. From numerical results, it is shown that the proposed scheme can estimate user velocity accurately with low cost.

  • PDF

TWO-CLASS M/PH,G/1 QUEUE WITH IMPATIENCE OF HIGH-PRIORITY CUSTOMERS

  • Kim, Jeongsim
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.749-757
    • /
    • 2012
  • We consider the M/PH,G/1 queue with two classes of customers in which class-1 customers have deterministic impatience time and have preemptive priority over class-2 customers who are assumed to be infinitely patient. The service times of class-1 and class-2 customers have a phase-type distribution and a general distribution, respectively. We obtain performance measures of class-2 customers such as the queue length distribution, the waiting time distribution and the sojourn time distribution, by analyzing the busy period of class-1 customers. We also compute the moments of the queue length and the waiting and sojourn times.

Monte Carlo Soft Handoff Modeling (몬데카를로 소프트 헨드오프 모델링)

  • 추현승;정민영;홍인기
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • In this paper some models for obtaining the distribution of a sojourn time in CDMA cellular systems are proposed. Knowledge on this is essential for reliable modeling of the soft handoff and for solving other related problems in the analysis of cellular system. The proposed model is based on random walk and can be adopted to different conditions. Analytical results can be obtained that lead to a quite complicated numerical scheme so simulation models are used for Monte Carlo experiments. Main assumptions include different kinds of mobile carriers (pedestrians and transport passengers) and round shape of a cell. The scheme for simulation experiments is presented along with the discussion of simulation results.

  • PDF