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Abstract

We consider a priority-based multiclass queue with probabilistic feed-
back. There are J service stations. Each customer belongs to one of the sev-
eral priority classes, and the customers of each class arrive at each station in
a Poisson process. A single server serves queued customers on a priority
basis with a nonpreemptive scheduling discipline. The customers who com-
plete their services feed back to the system instantaneously and join one of
the queues of the stations or depart from the system according to a given
probability. In this paper, we propose a new method to simplify the analysis
of these queueing systems. By the analysis of busy periods and regenerative
processes, we clarify the underlying system structure, and systematically ob-
tain the mean for the sojourn time, i.e.,the time from the arrival to the de-
parture from the system, of a customer at every station. The mean for the
number of customers queued in each station at an arbitrary time is also
obtained simultaneously.
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1. Introduction

Single server priority-based multiclass queues with feedback of output
customers can model many practical systems. Among them is a computer
system in which a central processor simultaneously processes many different
characteristics of service requirements for several classes of customers. For
example, a central processor may have to do computations, send information
to memory, retrieve information from memory, receive input, deliver output,
etc. Furthermore, each customer may be served repeatedly for a certain
reason. A single application of the system may require more than one task
to be processed. For example, somebody may input some data which must
be added to something that must be retrieved from memory and then
printed. Also in a time-shared computer system, the interval of time during
which the customer is permitted to remain in service is referred to as his
quantum. The quantum offered may or may not be enough to satisfy his ser-
vice. If sufficient, the customer depart from the system: if not, he reenters
the system of queues and waits within the system until his second quantum
starts, and so on. Eventually, after a sufficient number of visits to the pro-
cessor, the customer will have gained enough service and will depart. In this
paper, we consider such a multiclass queue with priority and random
feedback. By random feedback we mean that a customer whose service has
just been completed immediately joins queues again with assigned prob-
ability, or it departs from the system. Figure 1 shows the multiclass queue
with random feedback.

Queueing models with feedback have been investigated extensively, and
applied to the performance evaluation of computer systems and flexible
manufacturing systems, ete. Disney [2] has been concerned with sojourn
times in M / G /1 queues with instantaneous, Bernoulli feedback. Berg, et al.
[1] considered the system with deterministic routing, in which each cus-
tomer requires N services. They derived the set of linear equations for the
mean sojourn times per visit to the first come first served discipline. Simon
[7] considered the system with ¢ types of customers and » levels of priority.
Doshi and Kaufman [3] studied the sojourn time of a tagged customer who
has just completed his »* pass in a multiclass M/ G /1 queue with Bernoulli
feedback. Epema [4] has investigated a general single server time-sharing
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model with multiple queues and customer classes, priorities and feedback.
The purpose of this paper is to unify above systems and to simplify the
analysis.

In Section 2 we define our system as a stochastic process and then define
the sojourn times as cost functions of a tagged customer that naturally stem
from the analysis of the system. We assume that each customer belongs to
one of the J priority classes, 1 through J, where class ¢ has priority over class
7 if i<j. We derive equations that are satisfied by the cost functions. The cost
functions defined are closely related to busy periods. Thus in Section 3 we
analyze busy periods of the system, and then investigate the mean for the
number of customers in each station at the completion epoch of some busy
periods. In Section 4 we derive expressions of the mean for the initial so-
journ times, i.e., the time from the arrival to the completion time of his first
service, and the mean for the number of customers in each station at a com-
pletion epoch of the initial sojourn time (initial stay) of a tagged customer.
Customers are served in the first come first served (FCFS) basis or the last
come first served (LCFS) basis for each class. Section 5 is devoted to solve
the equations given in Section 2 to obtain the expressions of the mean for
the sojourn times, i.e., the times from the arrival to the departure from the
system, of a tagged customer for every station. In Section 6 we investigate
the steady state value of the sojourn times and the number of customers in
each station by using the little’s formula and the Poisson arrivals see time
averages(PASTA) property. A conservation relation of the system is con-
sidered in Section 7. We conclude in Section 8.

2. Model description

Let us introduce our model and associated notation specifically. Let there
be J classes of customers indexed as 1,2,...,J. Customers of class j arrive in a
Poisson process at station j(waiting room of class j) with rate 4. We assume
that each station has an infinite capacity. Let i=Y7_, 4. We assume that the
classes of customers are priority classes such that class 7 has priority over
class j if 7<j. Customers are preferentially served by a single server in the
order of priority, and for each class in the first come first served basis or the
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last come first served basis. If once the service to a customer is started it is
not disrupted until the service is completed even if customers with higher
priority arrive (nonpreemptive discipline). After receiving a service, a class
i customer either feeds back to the system and proceeds to station j with
probability p;, or departs from the system with probability pio=1—Y1_ p;.
For notational convenience, p=0. The feedback probability matrix is given
by P,=(p; - i, j=1,...,m)(m=1,....J). Note that feedback process of every cus-

tomer can only depend on his current class. Arrival processes, service times
and feedback processes are assumed to be independent of each other.

Arrival
Rates

Figure 1. A multiclass priority queue with feedback.

Let S; be the independent random that denotes the length of the service
time for a customer of class j. Let » be a remaining service time of a cus-
tomer found in service. Let T;(») be the total amount of service times of a
class 7 customer with his current remaining service time 7 receives until he
departs from the system or leaves for one of the stations j+1,...,/ for the first
time. We sometimes use a notation 7{™ to denote a time T'; of an m"* class 7
customer. The expected value of T ;(») is given by

J
E[T;(r)] = r+ > paB[Tii(Sy), 37=0,1,...,J. 2.1)
k=1

An empty sum, which often occurs at /=0, is defined to be 0 from now on.
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Specifically if we let 7;=7;(S:), then

E[T;] = E[S]+ gpikE[Tkj]- (2.2)
So we can obtain their solutions in a vector form if (1—B) ! exists. Further,
we define

o = 0, (2.3)

ot = YAET  G=1...J o0

i=1

Let us consider the following assumption-
Assumption 2.

1. P, —0 as#n—> o0,
2. pf <1

The first assumption is a sufficient condition for existence of (/—FP)' for
7=1,...,J. Since pJ is the traffic intensity of the system, throughout the paper
we assume that the system is not saturated in the steady state. Let R" be a
n-tuple of nonnegative real numbers.

The number of class ; customers except for a customer found in service is
denoted by #' and its vector is denoted by n=(m,,...,n;)ER. These
customers who are not currently served are called waiting customers. Let k
be the class of a customer found in service. The class of a customer found in
service at time ¢ is denoted by x(#), and his remaining service time is
denoted by »(¢). We assume that «(t)=0 if the system is empty at time <, or
7 is a service completion time. The number of waiting customers in station
at time ¢ is denoted by #;(¢#) and its vector is denoted by n(¢) = (#.(2),...,7/
(£)). Let us assume that customers are numbered in the order of their
arrivals from outside the system. Let us consider transition epochs of these
processes such as customers’s arrival epochs and service completion epochs.
Let us consider the &* customer arrives from outside the system at one of
the stations at some epoch oi(e=1,2,...). Let M° be the number of his visits
to the stations from his arrival at time o¢ until his departure from the sys-
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tem. Then let o7 be a time epoch just when he would arrive at one of the
stations after completing his £ service (k=1,2,...,M¢). For convenience, of
=gje for £>M°. Then let I(¢) denote the class (station) of a customer who
arrived at the last transition epoch before ¢(# =0). I(¢) is right continuous
with left-hand limits and 7(¢)=0 if a customer departs from the system at
the last transition epoch before {. Then we define a stochastic process Q=
Y@) =), x(t), r(¢), n(?) : =0} that represents an evolution of the system.
Possible values of Y(¢) are called system: states whose generic values are
denoted by Y=(j,x,7,n). The state space is denoted by & All of the
component processes from {x(¢) : £>0} through {n(¢) : >0} are left continuous
with right-hand limits except for the following cases. First, the process {«x(¢)
:t>0} take the value 0 at the moments of the completion epochs of service
periods, at which epochs the process has left-hand limits and right-hand
limits. Second, the process {n;(¢) : =0} is right continuous with left-hand
limits at service completion epochs. We restrict our attention to work con-
serving scheduling algorithms: for any system state Y= ({j,x,7,n)€¢, the un-
finished work (total amount of remaining service time) of all customers, T,
M)+ menT;/™ (work-in-system: Wolff [10]) is conserved for all scheduling
algorithms and where the server is not idle when any customers are waiting.
For an &” arrival customer, we would like to derive the cost functions to be
defined below. Let

1, if an &” customer stays at station j at time #,

0, if &” customer does not stay at station j at time #, (2.5)

Gy ={

where >0, j=1,...,J] and e=12,.... Then we define his sojourn time W~° at
station j as the interval from the arrival to the departure from the system.
That is,

o0
we = /0 Cyi(s)ds. (2.6)
If the & customer has arrived at the system, which the state is Y, at time of.

Its expected value Wi(Y,e,/) after time of conditioned on the system state Y
is defined as follow:
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Wi(Y,el) = E[[,Tca,j<t>dt|Y(af>=Y , @7

for /=0,1,.... Wj(Y,e,l) denotes the mean sojourn time of an &* customer
spent at station j after time o7 given that the system is in state Y at that
time. On the other hand, we define his nitial stay as the interval from the
time 47 to the completion of his first service just prior to ¢f+;. We call his in-
itial stay initial sojourn time. That is,

witr,e = B[ cioarien =), 28
where /=0,1,... and e=12,..... W(Y,e,!) denotes the mean #nitial sojourn
time of an &” customer spent at station j during his initial stay after time of
given that the system is in state Y at that time. Then the mean sojourn time
W;(Y,e,!) is decomposed into two parts: the mean initial sojourn time and
the mean sojourn time after his initial stay at station ;. We mathematically
express the fact as follow:

Wi(Y,e,l) = W](Y,el) + EW;(Y(of,y), e, 1 + 1)[Y(0f) = Y] (2.9)

Of course, every scheduling algorithm has its own cost functions. After
stating some assumptions, we will explicitly solve the equation (2.9) in sec-
tion 5.

3. Busy period analysis

An important model in the analysis of priority queueing systems is the
M/G /1 queue with exceptional first service. An exceptional first service
busy period is an interval that begins when an arrival with exceptional ser-
vice time finds the server is idle, and ends when, for the first time after that,
a departure leaves the system empty. One interpretation of this model is
that some kind of setup time is needed before an arrival who finds the sys-
tem empty can begin service. The quantities defined in the last section will
be shown to be closely related to some exceptional first service busy periods.



130 International Journal of Management Science Sung-Jo Hong - Tetsuji Hirayama

So we define some quantities related to them. Now let us consider the sys-
tem is in state Y=(7,x,7,n)€¢ at some transition epoch. We select a set of
customers C=C(Y) who stay in the system at that time. For example, if a
customer of the »™ queueing position at station 7 is in C, then (m)€C. Let
C’=C°(Y:C) denote a set of customers who stay in the system at that time
and are not in the set C. It is assumed that a class ¢ customer found in ser-
vice is staying at the 0" position of his queue.

We define an exceptional first service busy period B/(a) as the interval
that begins when an arrival with exceptional service time « finds the server
is idle, and ends when, for the first time after that, the system is cleared of
the customers from classes 1 through j. Then its expected value is given by
[10]

E[B(a)] = -a_I- (3.1)

1-p; :

For any state Y and any customer set C, let B(Y:C) be a busy period
initiated with state Y until the first time when the system is cleared of the
customers in C and the stations 1 through j, except for the customers in C°.
We call B(Y:C) a class j busy period initiated with (Y:C). For convenience,
let B°(Y:C) denote a time interval to complete service of a customer found
in service and all customers in C. Their expected values can be obtained by
the usual method [10]. That is, '

E[B(Y;C)] = r+ 3 E[S], (3.2)
(i;m)eC
E[BJ‘(Y;C)] — E[T(r)] :-?:;m)ECE[T}j]' (3.3)
3

Now we consider the number of customers in the system at the completion
epoch of a class j busy period. Let Ni,(k=1,...,J) denote the number of
customers in station / at the completion epoch of a class ; busy period
initiated by a class £ customer. Further, if the busy period is initiated by a
class £ customer with exceptional first service a, Nj;(¢) denotes the number
of customers in station / at the completion epoch of the class j busy period.
Then it can be shown that
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. j ‘
E[Nj(a)] = Ma + pu + Z{'\ia + P} E[N}], (3.4)
1=l
where 0<j</<J. By removing the condition on », we have
. j .
E[N{) = ME[Sk] + pu + Y_{MEI[Sk] + prs} E[N]]- (3.5)
i=1

It can be solved under Assumption 2. Now we define

. J .
g = N+> ME[N]), (3.6)
i=1
g oo (o k=0,
K Dt + z:;?:lpkiE[NiJl]) k= 17 ey J) (3.7)

where 0<j</<J. Also we let N(Y:C)(0<j</<J) be the number of
customers in station / at the completion epoch of B'(Y:C). Then we obtain
the formula:

EIN/(Y;C)) = X 1+E[NYml+ Y. E[N}]
mecs (im)eC (3.8)

S 1+re 4+ Y {EIS) + X},

meCy (i,m)eC

where Ci={m:(I,m)¢& C}. Since we are now considering work conserving pri-
ority scheduling algorithms defined in Section 2, these quantities E[NV
(Y:C)] are invariant for all scheduling algorithms under consideration.
From these analyses, we can obtain the explicit formulae of the cost
functions.

4. Initial sojourn times and Queue sizes

In this section we first derive initial sojourn times Wi(-) in station 7 for the
&” arriving customer(a tagged customer) at time o7 conditioned on the sys-
tem state Y(o/) at that time. Also we derive the expected value for the num-
ber of customers in each station at the completion epoch of the initial so-
journ time. Customers are preferentially served in the order priority, and
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for each class in the FCF'S discipline or the LCF'S discipline.

FCFS discipline

We first consider the system that has the FCFS discipline for each class.
Thus class 7 customers are served on a first-come-first-served basis if no
customers are in the stations 1 through 7—1 nonpreemptively. Let us con-
sider the tagged customer who arrived at station 7 with the FCF'S discipline
at of(e=12,... and /=0,1,...). Let Y(67)=Y=(i,x,7,n) E¢ be any state of the
system at his arrival epoch. Then the initial sojourn time for the tagged cus-
tomer consists of his service time and the waiting time, i.e., the time interval
from his arrival to the moment at which he first receives service. If we select
a customer set C% composed of a customer found in service and all customers
from classes 1 through 7 (except for the tagged customer) who are in the sys-
tem at time of. Then the waiting time for the tagged customer is a class 7—1
busy period initiated with {Y:C%}, regardless of the disciplines adopted by
stations 1,..., i—1. Thus we can write as

E[BNY;Ch) + S}
E[Teia(r)] | & E[Tn—l]

= = +)on

1-pi4 =1

WiI(Y7 €, l)

(4.1)
+ E[S}]

Let us now consider the number of customers in each station k(4t=1,...,J)
at the completion epoch of the his initial stay. Since the mean initial sojourn
time of the tagged customer is the sum of the class 7—1 busy period initiated
with {Y:C%}, and his service time S;, from (3.8) we have

Efnk(of2)IY (07) = Y] = EINSH(Y;C0)) + MELS]

ME[Si), k<,
= (& X+ E,_l n{BISIEE! + x5} + AE(SI, k=i, (4.2)
ng +r6 !+ T+ T ni{BISETT + )G 'Y + ME(S)], k> i

LCFS discipline

On the other hand if the service discipline for each class is LCFS basis,
the class 7 customers are served on a last-come-first-served basis if no
customers are in the stations 1 through 7—1 nonpreemptively. In this case, if
we select a customer set C7 composed of a customer found in service and all
customers from classes 1 through 7—1 (except for the tagged customer) who
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are in the system at time of Then the initial sojourn time of the tagged cus-
tomer is composed of a class ¢ busy period initiated with {Y:C?}, and the
tagged customer’s service S;, regardless of the disciplines adopted by stations
1,...,z—1. Hence,

W{(Y,el) = E[B(Y;C{)+S)]

E Txi :
.
Also the mean number of customers in each station 4 at the completion
epoch of the initial stay of the tagged customer is obtained as follow:

(4.3)

Enk(0f,)[Y () = Y] = B[N (Y;C)) + ME[S)]

AkE[St]) k < i, (4.4)
= n; + )\iE[Si];' ) _ . k=1,
n + r€f + X + Tzt i { EISi)6 + X} + ME[SH], k> i

Note that the above quantities do not count the feedback of the tagged
customer. As we may see from the above expressions, the expected values
derived in this section are linear combination of some components of the
state. We summarize them in the following lemma.

Lemma 4.1 Consider the multiclass M/ G /1 system with feedback defined
in Section 2. By appropriately choosing a nonnegative vector w'e R/*! and
nonnegative constants ¢’, ™ and w’, for any e=1,2,..., we have

p _ f ret Yt awt +wt, i=3 (4.5)
W;(Y,el) = {0, it
for Y=(i,x,»,n)E¢ and /=0,1,.... O

Lemma 4.2 Consider the multiclass M/ G /1 system with feedback defined
in Section 2. By appropriately choosing a nonnegative matrix u'e &/ and
nonnegative vectors a‘’c R'™/, d*€ RV, for any e=1,2,..., we have

E[n(o},)[Y(0f) = Y] = ra’ + d* + nu' + g’ (4.6)

for Y=(7,x,7,n)€¢ and /=0,1,.... O
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The important things to consider about these expressions are first that
elements 1(o%), x(af), r(67), and n(sf) of state of the system should be suf-
ficient for estimating the expected value of the cost functins and, second that
these expected values should be linear functions of components (»,n) for any
given class ¢ customer. Of course, every scheduling algorithm has its own
coefficients.

5. Sojourn times analysis

In this section we derive explicit formulae for the sojourn times WX(-)
under some assumptions. As we have defined, WAY,e,/) is the mean sojourn
time of the &” customer, who arrives at time ¢f when the system is in state Y,
spent at station s until he departs from the system. We make the expressions
(4.5) and (4.6) as the following assumption.

Assumption 5. For any ¢” customer (e=1,2,...), we assume

ret + Y +nw +ul, i=j
0, i#£]
E[n(of,)IY(of) = Y] = ra' + d* + nu’ + &',

Wi(Y,el) = {

hold for the state Y=(7,x,7,n)€e. 0O

Of course, the assumption is satisfied by the priority scheduling algorithms
considered.

Now we focus on a station j(j=1,...,/). Let 7 =/° and define the following
vectors and matrices:

W = (0,...,0,w",0,...,0) eRI,

“lPu Ulpm e U;PU
2 2
u'pey uUpyn ... UPy
Up = . . . . e RJXJ)
wpn wpp ... ulpy

where * denotes transposition of a vector. We now suppose (I—U,) " exists,
where I is an identity matrix. Then we can define
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=(I-Up,)"'W € R7*, (5.1)

and define S
gl k=1 P1EWE;j

i—1 ~J
g Z'k=1JPj-1kaj -
V = w’ +g’JZk=1ijij € R™,
i+1
g7 Ykm1 Pi+ 1k Wi

J
g7 i Pk Wi

From Assumption 2, (I—P;) " exists. Then we can define

wlj
. = (I- P,)"'Ve RIXV (5.2)
wy;
) ai.Z;’:l'Pﬂsz, i # 7, (5.3)
Pij { 507 + a’ E{:l PitWij, i= j1 )
0, k=0,
o= d* YL, pawy, i#jand Kk #0, (5.4)

P+ A YL pawyj, i=jand K #0.

As we have stated, for every scheduling algorithm, these vectors and
matrices have different values.
Now we can derive the following theorem.

Theorem 5. We assume that Assumption 2 and Assumption 5 hold, and that
(I—-U,) ! exists. Let Y=(4,x,7,n) €¢ be a given system state. Then, for any
station j(7=1,...,7),

W,(Y,e 1) = { TP+ ¥+ ow;+wy, 1=0 (5.5)
T nw;; + W, I>0

is a solution of equation (2.9).
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Proof. We shall show that (5.5) satisfies the equation (2.9). For /=0, let Y
(63)=Y = (i,x,7,n) be the state of the system at arrival epoch 5. For 7=/,

W (Y, e,1) + E[W;(Y(0f.,), e 0 + D[Y]

. . \ . J
= ro' + P+ nw' +w' + > paEn(of,) Wi + wi|Y)
k=1

J
= rot + ¢ aw' w4+ ) pa [{ral + &+ nu' + g1} wig + wy]
k=1

. . J N . . J
= r {(,o’ +at Zpikaj} + {1/1"‘ +d* Zpikwkj}
k=1

k=1
+n {w' +u Ep,-kwk,-} + {w' +8 Y pawi+ Zpikwkj}
k=1 k=1 k=1
= Wi(Y,el).

The last equation follows from the definition of the constants w; and w;.
For i+#j,
E[W;(Y(0[1),e,l + 1)]Y]

J
= Y piEn(of,)Wi; + wis]Y]
k=1

= ipik [{ra‘ +d* +nu' + 8‘} Wij + wki]
k=1

J J J
=7 {a‘ Zp,-kwk,-} + {dm Zp.-kwk,-} +n {u‘ Zpgkwkj}

k=1 k=1 k=1
J J :
+ {8’ zpikwkj + Zpikwkj}
k=1 k=1
= W;(Y,el).

For />0, let Y(67)=Y=(7,0,0,n) be the state of the system at arrival epoch
of.
For i=j,
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Wi(Y,e1) + EW;(Y(0f,1), e, L+ 1)[Y]

J
= nw'+w'+ Zp,-kE[n(a,‘H)wkj + wkjlY]
k=1

ow' + wi + zj:pik [{nui + gi} Wi + w,,,-]
k=1

J J J
n {w‘ +u Epikwkj} + {w' +8 Y pawi + Zpikwkj}

k=1 k=1 k=1

W;(Y,e1).

The last equation follows from the definition of the constants w; and wy.
For i#j,
EWi(Y(of,1) 6,1 +1)[Y]

J
= Y paEn(o},,)Wi; + wi;|Y)
k=1

= S’:Pik [{nu‘ + gi} Wij + wkj]
k=1

J J J
= n {u’ Z Pikwkj} + {gt > piWij + Zpikwkj }
k=1

k=1 k=1
= W;(Y,el).

Hence, W(Y,e,/) satisfies equation (2.9). O

6. Steady state mean sojourn times

We have considered the system in an arbitrary state. In this section we
evaluate steady state values of the cost functions W(-). Let us consider the
system operating under some fixed scheduling algorithm defined in Section
2. We define the following time average values:

tim 2 [ r(e)1{x(e) = s}, (6.1

im — [ 1{x(s) = x}ds, 6.2)

t—oo t Jo

]
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where

1= ={ g 0 7

Then 7* is a cumulative remaining service time when the server serves
x-customers, and g~ is a fraction of time that the server serves x-customers.
We are willing to assume that
[A1] The stochastic process @ is regenerative [6].
If we let N be the number of customers served during a regenerative cycle.
[A2] The system is initially empty and E[Npz]<co.
The throughput & of the station j(j=1,...,J) is defined as the following
equation:

;=\ + Zpijéi (6.3)

Then it can be shown that

=K __ éx;in/z K=l’---:~];
™ = { 0, k=0, (6.4)
% __ éxE[Sx]) K= 17'-',']’
=1 =0 6.5)

If we let # be the remaining service time of a customer found in service at
any time,

J
E k2 % (6.6)

k=1

Since we consider the system with the steady state, we define the following
customer average for the sojourn time at station s:

Wi() = lx_rgo-ﬁ;wg, (6.7)

if the limit exists. Then, from the regenerative assumptions [Al] and [A2],
we may find that this customer average value may be represented as:
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B wy
W"(')——E[_NJ_’ (6.8)

if we may assume that every numerator in the right-hand side of the above
expression is finite. Further the customer average values of components of
the state are defined by:

N

A o= Jim %;nxas), 6.9)
1 N

o= fim g (D) Ls(e) = <), (6.10)
1 N

¢ = Jlim =3 1{x(0§) =}, (6.11)

if these limits exist, where £=1,...,J. Let = (#y,...,7;). Now we assume that
[A3] E[T%;(c5) <0 and E[T 8 (cf)< o for j=1,...,J.
Then we have

P E[Eiv:l n;(of)]
7 E[NB] ’ (6.12)
o= E[ =1 7(08)1{x(0§) = "}]
E[Ng] (6.13)
- — E[Eeﬂ l{K‘(UO = K'}]
7 E[N3) ’ (6.14)

The time average value for the number of customers #; is defined by:
N .1t
a; = lim —t—A n;(s)ds, (6.15)

Let n=(#,...,#;). Now we can see the following lemma concerned with
representations of steady state values for the mean sojourn times.

Lemma 6. We assume that Assumption 2, Assumption 5 and the steady
state assumptions from [Al] through [A3] hold. Then E[Z2W5]< o (i=1,..
J). Further we have the following representations:
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. J
W?() = Z% {Z (fk()oij + 517") + nw;; + w;]-} 0 (6.16)

i=1 =1

We use the generalized version of Little’s formula (H=G) [8] that equates
time average values of costs with customer average values of costs to obtain

fij +§ = AW;() (6.17)
From the Poisson arrivals see time averages (PASTA) property [9], it can

be shown 7 *=#* and ¢ *=g* Then, from the equations (6.6) and (6.16), we
have

- N J
W) =%2 {f¢-~+ ¢F.qk+ﬁw--+w,~-}
J ; /\ 13 kz=:1 ij 23 ] (6.18)
Thus we obtain
Ai+@ =3 N {Fsoi,- + Y YEG + fiwy + wif} (6.19)
i=1 k=1

If we define the follong vectors

S

J
3 A Wity e, Wig)
i=1

J
s = Z: Ai(wiy, . . . wig)
o1

So

J J J
Y (M, + 3 . Fou + Zdzﬁ‘,«i") (@, )
i=1 k=1 k=1

we obtain the equation that determines the steady state expected value n:
n=sp+0S+s. (6.20)
If the inverse matrix (I-8) ™" exists, we have

fi = (so +s)(I-S)! (6.21)
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Finally let W/(7) be the steady state value for the mean sojourn time of a cus-
tomer spent at station j, given that the customer arrives at station ¢ from
outside the system. Then we can get the steady state values:

W; (1) = Ty + Z w,]q + (sp +s)(I - S)'lwij + wij (6.22)

These results are arranged in the following theorem:

Theorem 2. We assume that the multiclass M/ G /1 system with feedback
defined in Section 2 satisfies the steady state assumptions from [A1l] through
[A3]. Let fi=(,,...,7). be the vector of the steady state mean number of
customers defined by the equation (6.15). Further, let Wi(i) be the steady
state value for the mean sojourn time of a customer, who initially arrives at
station 7 from outside the system, spent at station ;7 until his departure from
the system. If we assume that Assumption 2 and Assumption 5 hold, and that
the inverse matrix (I—S) ! exists, for 7,j=1,...,/,

0= (sg+s)(I- S)‘1
( ) = TCP;J + Z‘IIJU + (So + S)(I S) Wi + W5 O
Of course, the total mean sojourn time W(i) of a customer, who arrives at

station 7 from outside the system, spent in the system from the arrival to the
departure from the system is given by

J
mo = ; hO (6.23)
Z qu* + (So + S)(I - S)_1 iw,’j + i’w,‘j.

J=1 k—lJ i=1 i=1

i
3
[Vju.

7. Conservation relation

In this section we consider a conservation relation that holds between the
mean sojourn times for all customer classes. If a scheduling algorithm
improves the sojourn time for some class, the sojourn time for another class
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will degrade.

Scheduling algorithms that have been considered in this paper are work
conserving. Let Y={(7,x,7,n) €¢ be any state of the system. In this case, the
unfinished work U(Y) at state Y is defined as the time required to complete
the service of all customers present at that time(That is, when the system is
in the state Y) until their departure from the system. Then the expected
value of the work is

J
E[U(Y)] = E[T.s(r)) + kz_:l BTy (7.1)

The value is conserved for all work conserving scheduling algorithms defined
in section 2. Its steady state (time average) value Uis given by

J J
Z puE[Ty) + Y i E[Ty) (7.2)

k=1

u[V]x.

From equations (6.17) and (6.22), we obtain

fij+§ = E/\k k), j=1,...,J (7.3)
Hence, we have
- J J J J J
U = #4538 puBllu] + 1.5 MWW (R)E(T] - 5 ¢ EIT;)
= 1= j=1k=1 =1
J‘ ! ;. 7 (7.4)
= 7= S FES)+ 35 MW;(k)E[T;).

xr
[
—

i=1k=1

By considering the system with a scheduling algorithm that serves customers
nonpreemptively from their external arrival until their final departure in the
order of FCFS, it can be shown that the total work U is equivalent to the
mean sojourn of customers of such M/ G /1 system. Hence the left-hand
side of the above expression can be easily calculated by the Pollaczek-
Khinchin mean value formula [5].
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b = Sim MBI (7.5)
2(1 - p3)

We finally obtain a conservation relation for the multiclass M/ G /1 queues
with feedback. Assume that the multiclass M/ G /1 queues with feedback
defined in Section 2 is in the steady state defined in Section 6. Further, we
assume that the assumptions in Theorem 2 hold. Let W(3) (ij=1,...,J) be the
mean sojourn time of customers, who initially arrive at station 7 from the out-
side of the system, spent at station j until their departure from the system.
Then the equation

[\’]a.

J
C= MW;(0)E[T;),
R 26)
holds for all scheduling algorithms defined in Section 2, where
J
=U -7+ FElSi, (7.7)

k=1

is a constant independent of these scheduling algorithms. 0O

8. Conclusions

We have concerned with the multiclass M/ G /1 queues with feedback.
Customers are classified into J groups according to their priorities. Non-
preemptive scheduling algorithms have been analyzed. That is, if once the
service to a customer is started it is not disrupted until the service is
completed. Performance measures for every arriving customer such as the
expected values of sojourn times are defined as conditional expectations of
the system state at their arrival epochs. These values are divided into two
parts: the expected values concerned with his initial sojourn times, and the
expected values accumulated after his initial sojourn times. We have
obtained a set of equations that are satisfied by these values. Then we have
obtained these expected values concerned with the initial sojourn times from
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the analysis of (exceptional first service) busy periods for each service disci-
pline adopted by each station. Further we have considered the steady state
of the system and derived the steady state values of these system perform-
ance measures by using the generalized little’s formula and the PASTA
property. The special features of our method are summarized as follows:

1. We have treated the system performance measures such as the mean so-
journ times explicitly as the cost functions of the system state.

2. Sufficient conditions that the objective cost functions can be explicitly
derived have been given.

3. The mean values for the sojourn times are given in the matrix form.
Hence, the algorithm that yields these values is easily constructed.

By appropriately choosing system parameters and combining the service
disciplines, we can also construct many of the scheduling algorithms con-
sidered up to date.
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