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1. Introduction

IEEE 802.11 is one of the most popular protocols for
wireless and mobile networking which offers two dif-
ferent MAC mechanisms. The basic mechanism called
the Distributed Coordination Function (DCF) is based
on the CSMA/CA scheme and allows for independent
and distributed channel access. The optional PCF is a
centrally-controlled access scheme, according to which
terminals can transmit only after receipt of prompt (a
polling frame) from the point coordinator being usually
the Access Point (AP) of the network.

The DCF works well under low load conditions, but
its performance degrades essentially with increasing
the number of terminals and load. Waste of bandwidth
caused by collisions and increasing backoff times be-
comes very high in the presence of hidden terminals.

The PCF allows avoiding the problems, since it oper-
ates on the contention-free base, and therefore achiev-
ing a much high maximum throughput than the con-
tention-based DCFin Qiao et al. (2002), Kopsel et al.
(2000), Choi(2001), Vishnevsky and Lyakhov (2001).

Usually, the AP polls terminals in the Round-Robin
way. In fact, the PCF represents a TDMA scheme,
where the network operation time is subdivided into
polling cycles consisting of time-variable slots <Figure
1>. Slot i is designated for a frame exchange between
the AP and the ith terminal. In contrary to a terminal
controlling the only one queue of packets, the AP man-
ages N AP's Queues (APQs), where N is the number of
polled terminals, and APQ j contains packets to be
transmitted to terminal j. We call the APQ j and the jth

Terminal's Queue (TQ j) the opposite queues. Both the
APQ and TQ size are assumed unlimited in the paper.

At the beginning of the jth slot, the AP sends a poll-
ing frame being either a CF-DATA frame if APQ j is
not empty or a short CF-POLL frame containing no
data: see <Figure 2>. If the AP received a data packet
in the previous slot, it acknowledges the receipt by set-
ting the appropriate bit to one in the polling frame
MAC header. Upon the correct polling frame receipt,
the terminal replies with a data frame or null frame if
TQ j is empty containing no payload together with
possible setting the acknowledgment bit to one, after a
short interval . Having received the frame, the APδ
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waits for and starts polling the next terminal. This stanδ -
dard polling policy has been studied in Vishnevsky et
al. (2000).

However, with a large number of terminals and low-
rate traffic, there is essential waste of bandwidth caused
by unsuccessful polling attempts not replied by data
transfers in Qiao et al. (2002) and Choi (2001). This is
the reason why the conventional PCF can be less effi-
cient than the DCF under normal load conditions and
has not been widely used up to the present.

Slot 1 Slot j SlotN

Queues of terminals

TQ 1 TQ j TQ N

Base station, Access Point (AP)

APQ 1 APQ j APQ N

Figure 1. PCF operation scheme

Figure 2. PCF frames

Our paper focuses on decreasing this waste called the
polling overhead in Kim and Suh (2004). One of the
previous attempts to solve the problem can be found in
Qiao et al. (2002), where the implicit signaling sc-
heme was proposed, according to which a terminal
indicates setting the bit added specially to the MAC
header to one that its queue is not empty. However,
this approach, firstly, leads to loss of compatibility
with original 802.11 devices, and secondly, relies on
the DCF with solving the problem of resuming the
terminal polling. Another DCF-based method for
decreasing the polling overhead was proposed in
Charzinski (2001).

Sharon and Altman (2001) suggest a STFP (Simulta-
neous Transmit Response Polling) protocol to over-
come the polling overhead in the context of IEEE
802.11 PCF. It exploits the capture phenomena to noti-
fy the upstream link status of each terminal by sending
the polling response with a weak signal. Due to the
capture phenomena itself, this scheme could undergo
the performance degradation under the harsh fading
environments.

Qiao et al. (2002), Kim and Suh (2004), Veeragha-
van et al. (2001), Ziouva and Antonakopoulos (2002,
2003) proposed and studied various dynamic polling
schemes for PCF networks serving voice traffic, which
packets are not queued.

In our paper, which revises and substantially extends
Vishnevsky and Lyakhov (2004), we solve the prob-
lem only by the PCF means, in contrast with Qiao et
al. (2002), and Charzinski (2000). Moreover, in con-
trast to Kim and Suh (2004), Veeraghavan et al.

i=0, Wi=1, k=1

k=Wi ?

polling

NULL ?

i=I ?

i:=i+1

i:=0

k:=1

Is the APQ empty?

polling
+ DATA

NULL ?

i:=0, k:=1

k:=k+1

no

yes

yesyes

no

Slot beginning
i=0, Wi=1, k=1

k=Wi ?

polling

NULL ?

i=I ?

i:=i+1

i:=0

k:=1

Is the APQ empty?

polling
+ DATA

NULL ?

i:=0, k:=1

k:=k+1

no

yes

yesyes

no

Slot beginning

Figure 3. Dynamic backoff-based polling strategy
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(2001), Ziouva and Antonakopoulos (2002, 2003), we
focus on data transmission, when packets are stored in
the APQ and TQs. Specifically, we are going to adopt,
develop, and study the polling backoff policy, a spe-
cial case of which was suggested for the Bluetooth
networks in Bruno et al. (2002). According to this ada-
ptive policy <Figure 3>, a terminal is necessarily pol-
led only if its backoff counter k is equal to the backoff
window Wi specified for each backoff stage, i = 0,1
, ,… I. At the null stage, k = Wo = 1 and the terminal is
polled every cycle. When the AP receives a null frame
from the terminal, it understands that the terminal's
queue is empty and sets i = 1. During the next Wi - 1
cycles (1 < Wi≤Wi+1 for all 0 < i < I - 1), the AP will
poll the terminal only if the appropriate APQ is not
empty. Otherwise, slots designated to the terminal will
be null, that is, skipped, and the AP only increments
k by 1 for a cycle. Upon receipt of a data packet from
the terminal, the AP returns it to the null stage. When
k = Wi , the AP polls necessarily the terminal and, in
case of a null reply, it increments i by 1 if i < I and
sets k = 1. The particular forms of this backoff policy
were proposed in Bruno et al. (2002) for the Bluetooth
networks with Wi = 2i and in Ziouva and Antonako-
poulos (2002, 2003) with I = 1, voice traffic only.
Al-Rousan M. and Abu-Rahmeh O (2008) presents a
new analytical model to compute the performance of
the IEEE802.11 standards. The model is simple, but
nevertheless exceedingly accurate, which can be used
to compute the throughput and delay for all access
mechanisms supported by the IEEE802.11 standard.
These mechanisms include the distributed coordina-
tion function (DCF), the DCF with RTS/CTS, and the
point coordination function (PCF). They provide an
extensive throughput and delay performance evalua-
tion of the above mentioned access mechanisms, in
the assumption of noisy channel and finite number of
terminals.

In the next section 2, we develop Markov models
describing the changes of the 802.11 PCF network
queues in the case of ideal channel and the generic
backoff policy. To consider both the rate and bursti-
ness of incoming traffic, we choose a Batch Poisson
flow of packets as a load for each queue, a number of
packets in a batch being geometrically distributed.
That is, a batch contains h packets with probability
(1-q)qh-1, where q-1 is the average batch size. In sec-
tion 3, using the models, we estimate the average MAC
service time and the average MAC sojourn time for

each queue, which are main performance measures in
normal load conditions. Specifically, we define the
average MAC service time as the mean time between
either the acknowledgment receipts for consecutive
packets of the queue if the packet arrives to non-empty
queue, or instances of the packet arrival and ackno-
wledgment. Both of estimated performance measures
are of great importance for transport layer protocols,
such as TCP. In section 4, we adopt the developed an-
alytical method to compare different polling policies
and to choose the optimal backoff rule. In the last sec-
tion, we give a brief conclusion.

2. Model description

We study the IEEE 802.11 PCF network consisting of
the AP and N terminals. The batch arrival rate, the mean
packet transmission time including MAC and PHY
headers, and the mean batch size characterizing the traf-
fic burstiness are equal to dΛ , dT , and 1

dq− , respectively,
for an APQ and to uΛ , uT , and 1

uq− for a TQ.
Let ( )dj t and v ( )j t = [ ( ) ( ) ( )]j j uji t k t t, , be the sto-

chastic processes representing the states of a APQ j
and TQ j at time t. The APQ state is described only by
the APQ length dj measured in batches, while the TQ
state description with dynamic polling includes also
the backoff stage number Ii j ,,1,0= and the backoff
counter value ij Wk ,,1,0= . With the standard polling,
the TQ state is described only by uj and ( )dπ and

( )u i kπ , , are steady-state probabilities of these states.
For both processes, we adopt a discrete time scale

with a cycle as the time unit. For ( )dj t , each t corre-
sponds to the beginning of the slot intended for the jth

terminal, including the null slot case. For v ( )j t , each
t corresponds to the end of either the terminal polling
if the slot is not null or the previous terminal's slot. We
assume that all ( )dj t and v ( )j t are independent. However,
in fact, v ( )j t depends on ( )dj t , since a conditionally
polled terminal can transmit only if the opposite APQ
is not empty. We will try to consider the dependence
by choosing appropriately the transition probabilities
for v ( )j t . With modeling, we will adopt the following

Main Assumption : For any queue, we neglect the
probability that more than one batch arrive to the queue
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during a cycle.
The assumption allows us simplifying the model

form and using average transmission times instead of
their distribution with calculating the transition proba-
bilities. Moreover, with the assumption, uj jk≤ if

0ji > .

2.1 Access Point Queue model

Obviously, ( )dj t is a birth-and-death process, where
a “birth” happens when the current batch service is not
completed and new batch arrives. That is, the “birth”
probability is 0 1 exp{ ( (0))}d

d d c slT Tλ ∗= − −Λ + (for 0d = ),
while for 0d > we have

(1 )[1 exp{ ( ( ))}]d
d d d c sl dq T Tλ ∗= − − −Λ + , (1)

where ( )d
sl dT is the average thj slot time that depends

on d , and cT ∗ is the average time of other 1N − slots. For
0d = , the thj slot is not null under condition A that the

terminal is necessarily polled in the current cycle.
So 0

0 0(0) [ 2 (1 ) ]d d p p
sl sl p u u uT T t t Tν δ ρ ρ= = + + − + , where 0t is

the transmission time of CF-POLL or NULL frames, p
uρ

is the probability of non-empty opposite TQ under con-
dition A , and pν is the condition probability, that is:

1

1 1 0

1 ( )
iWI k

p u
i k

i kν π
−

= = =

= − , , ,∑∑∑
1

0

1 ( 0)
I

p
u p u i

i

i Wρ ν π−

=

= − , , .∑

where, 1pν = and p
u uρ ρ= with the standard polling.

With 1d > , TQ j can not be in such states v ( )j t =
[ ( ) 0 ( ) ( )]j j uji t k t t> , , that ( 1) 0uj t − > , since the termi-
nal would be polled in the previous cycle, otherwise.
Let X be the set of these states. So

1 1 1
0( 1) 2 (1 )d d

sl d sl d u u uT T T t Tδ ρ ρ> = = + + − + , (2)

where 1
uρ the probability of non-empty opposite TQ

under condition v j X∉ . At last, for ( ) 1d t = the thj

slot time depends on ( 1)d t − : TQ j can be in any
state if ( 1) 0d t − = , while v j X∉ should be hold with

( 1) 0d t − > . Therefore, (1)d d
sl slT T ∗= is also determined

by (2) with substitution of uρ
∗ (that will be obtained

further) for 1
uρ . Thus, (1)d dλ λ∗= and ( 1)d d dλ λ> = ,

where right parts of these equations are defined, sub-
stituting d

slT ∗ and 1d
slT into (1). At last,

0 1( 1){ (0) (1) [1 (0) (1)] }d d d
c d sl d sl d d slT N T T Tπ π π π∗ ∗= − + + − − .

A “death” happens with the current batch service com-
pletion and the absence of new batch arrival for a given
cycle, so its probability is exp{ ( )}d

d d d c slq T Tμ∗ ∗ ∗= −Λ +

with 1d = or 1exp{ ( )}d
d d d c slq T Tμ ∗= −Λ + with 1d > .

Thus, we find the steady-state probabilities:
1(0)d dGπ −= ,

20 0
1 1(1) ( 1)d d d d

d d d d
d d d d

G Gλ λ λ λπ π
μ μ μ μ

−∗
− −

∗ ∗

⎛ ⎞
= , > = ,⎜ ⎟

⎝ ⎠
(3)

where the normalizing constant

0

1 1d d
d

d d d

G λ λ
μ μ λ

∗

∗

⎡ ⎤
= + +⎢ ⎥−⎣ ⎦

(4)

and 1 (0)d dρ π= − is the probability of non-empty APQ.
Obviously, dλ should be less than dμ . Now we can find

uρ
∗ . Since the probability that the APQ whose length is

one was empty in the previous cycle is equal to

0 0(0) { (0) [1 ] (1) (2)}d d d d d d d d d dλ π λ π λ μ π μ π μ∗ ∗ ∗/ + − − + = ,

then 1(1 )u d u d uρ μ ρ μ ρ∗ ∗ ∗= + − , where 0 1
1 iI W

u i k
ρ π

= =
= −∑ ∑

( 0)u i kπ , , is the absolute probability of non-empty oppo-
site TQ, while 1

uρ will be determined with TQ model
analysis.

2.2 Terminal Queue model

With the standard polling, ( )uj t is also a birth-
and-death process, which steady-state probabilities are
also defined by (3) and (4), where we substitute 0λ for

0
dλ λ, for dλ and dλ

∗ , and μ for dμ and dμ
∗ , which are,

in turn, defined by the same formulae, using uΛ and uq

instead of dΛ and dq , 1 ( )u p
sl u dT T tδ ρ= + + instead of

1d
slT and d

slT ∗ , and 0
0 ( )u p

sl dT t tδ ρ= + + instead of 0d
slT .

Here 0( ) (1 )p
d d d dt t Tρ ρ ρ δ= − + + is the average poll-

ing time.
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Figure 4. Beginning of Markov chain for a TQ with
1 2W = and 2 4W =

With adynamic polling, the process v ( )j t can be
considered as a Markov chain, which example is shown
in <Figure 4>. Transitions returning the terminal to the
null stage are shown only for states (1, 2, 2) and (2, 3,

3). Let us define non-null one-step transition proba-
bilities. In fact, all these transitions can be attributed to
one of the following generic transitions:

Backoff counter increment for iWk < or transition to
the next stage for ik W= and 0= without γ -transi-
tions and with ψ -transitions increasing the TQ length.
These transition probabilities are:

1 1( ) (1 )exp{ ( )} andu cTθ η θ η∗Γ , = − −Λ +

1 1( ) 1 ( ) for 0θ η θ θ ηΨ , = − − Γ , > ,

while

0 0 0 0( ) exp{ [ ( )]} andu cT tθ η η θ δ∗Γ , = −Λ + + +

0 0 0 0( ) 1 ( ) for 0θ η θ ηΨ , = − Γ , = ,

where θ and η with various indices are the polling
probability and the conditional average value of the
next polling time, respectively. After γ - and ψ -tra-
nsitions from ( I , IW , 0), the TQ appears in ( I , 1, 0)
and ( I , 1, 1), respectively.

For states with 0> : transitions to a null-stage state
with increasing, decreasing, and without changing the
TQ length ( α -, φ -, and β -transitions). Their proba-
bilities are:

Values of andθ η Natation

i, k, θ    α β φ ψ γ

0 1 1, , > 1 - - )(p
dt ρ λ 0β μ - -

1 0ii k W, < − , dρ 0 1( )pt ξ - - - - - 0ψ 0γ

1 0ii W, − , dρ 1( )pt ξ - - - - - 0
0ψ 0

0γ

0ii W, , 1 )(p
dt ρ - - - - - 0λ γ ∗

1 1ii k W, < − , > ω - 0 ( )pt ω 2( )pt ξ 2α 2β 2ϕ 2ψ 2γ

1 1ii W, − , > ω - ( )pt ω 2( )pt ξ 2α 2β 2ϕ
0
2ψ 0

2γ

1ii W, , > 1 - - 2( )pt ξ ∗
2α
∗

2β
∗

2ϕ
∗ - -

01 1ii k W, < − , dρ - 0 ( )pt ω 1( )pt ξ ∗
1α 1β 1ϕ 1ψ 1γ

11 1ii k W, < − , ω - 0 ( )pt ω 2( )pt ξ 2α 2β 2ϕ 2ψ 2γ

01 1ii W, − , dρ - ( )pt ω 1( )pt ξ ∗
1α 1β 1ϕ

0
1ψ 0

1γ

11 1ii W, − , ω - ( )pt ω 2( )pt ξ 2α 2β 2ϕ
0
2ψ 0

2γ

01ii W, , 1 - - )(p
dt ρ λ 0β μ - -

11ii W, , 1 - - 2( )pt ξ ∗
2α
∗

2β
∗

2ϕ
∗ - -

Table 1. Values of θ and η and notation of transition probabilities
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2 2A( ) (1 )[1 exp{ ( )}]u u c uq T Tθ η θ η δ∗, = − − −Λ + + + ,

2 2( ) exp{ ( )}u u c uq T Tθ η θ η δ∗Φ , = −Λ + + + ,

2 2 2B( ) A( ) ( )θ η θ θ η θ η, = − , −Φ , .

For every possible kind of states, concrete values of
θ and η as well as the notation of transition proba-
bilities are given in <Table 1>. With considering states
( i ,k >1,1) (bold ellipses in <Figure 4>), we find that
the polling probability θ to be determined for such
state depends on the way of reaching the state. If the
TQ passed to the state from ( i , k -1,0), then θ ρ= d ,
since the APQ could be in any state before the tran-
sition; otherwise, 1 exp{ }d cTθ ω ∗= = − −Λ since the APQ
was empty a cycle ago. To take into account of this pe-
culiarity and to save Markov property, we have to split
each of these states into two sub-states: ( i , k ,1 0 ) and
( i , k ,11) reached from ( i , k -1,0) and ( i , k -1,1),
respectively. The state ( i ,1,1) consists only of ( i , k ,
10 ).

Now we can determine the probability 1
uρ that the

opposite TQ is not empty under condition v j X∉ :

∑∑
= =

−=
I

i

W

k
uu ki

0 1

1 )0,,(1 πρ

1
1 2 2

1 ( 1 ) ( )
iWI k

u u
i k

i k i k lπ π
= = =

⎧ ⎫⎡ ⎤/ − , , + , , .⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑∑ ∑

In <Table 1>, 0 ( ) ( )p
dt Tω ω δ= + , and probabilities ξ

(with various indices) that the opposite APQ will not
be empty before the next polling are:

1 0
(1)1 exp{ ( 2 )}d d

d d c d
d

q T T tπξ ρ δ
ρ

∗⎡ ⎤
= − −Λ + + +⎢ ⎥

⎣ ⎦
(1 )dρ ω+ − ,

1
(1)1 exp{ ( 2 )}d d

d c d u
d

q T T Tπξ δ
ρ

∗ ∗= − −Λ + + + ,

2 1 exp{ ( 2 )}d d c d uq T T Tξ δ∗= − −Λ + + + ,

2 0 21 exp{ (2 2 )} (1 )d c uT t Tξ δ ω ξ∗ ∗= − −Λ + + + − − .

2.3 Steady-State Probabilities
Now we can determine steady-state probabilities
( )u i kπ , , . These probabilities are found in turn, us-

ing global balance equations written, firstly, for states
of non-null stages and then for (0 1 ), , with l ,,1,0=

IW .

To simplify calculations, we use
( ) ( ) (0 1 0)u u ui k i kπ π π∗ , , = , , / , , instead of ( )u i kπ , , .

Obviously, 0(0 1 0) 1u Hπ ∗ , , = = , while for 0i >

1
1 0( 0) ( )k

u i ii k W Hπ γ γ∗ ∗ −
−, < , = ,

20
1 0 0( 0) ( ) iW

u i i ii W H Hπ γ γ γ −∗ ∗
−, , = = , (5)

0
0 1( 1 1 )u ii Hπ λ∗

−, , = , (6)

2
0 1 0 0( 1 1 ) ( )k

u i ii k W Hπ ψ γ γ∗ ∗ −
−, < < , = ,

20
0 1 0 0( 1 ) ( ) iW

u i ii W Hπ ψ γ γ −∗ ∗
−, , = , (7)

1 1 0( 1 1 ) ( 1 1 )u i ui k W i kπ γ π∗ ∗, < < , = , − ,

2 11( 2) ( 1 1 )uk i kγ π ∗+ > , − , ,
0

1 1 0( 1 ) ( 1 1 )u i u ii W i Wπ γ π∗ ∗, , = , − ,
0
2 11( 2) ( 1 1 )i u iW i Wγ π ∗+ > , − , ,

1 0( 2) ( 1 1 )u i ui k W i kπ ψ π∗ ∗, < , = , − ,

2 11( 2)[ ( 1 1 )uk i kψ π ∗+ > , − , +

2 ( 1 2)]u i kγ π ∗+ , − , ,
0
1 0( 2) ( 1 1 )u i u ii W i Wπ ψ π∗ ∗, , = , − , +

0
2 11( 2)[ ( 1 1 )i u iW i Wψ π ∗+ > , − , +

0
2 ( 1 2)]u ii Wγ π ∗+ , − , ,

( 2 2 )u ii k W kπ ∗ , < < , < ≤ =

2 21( ) ( 1 ) ( 1 1)u uk i k i kγ π ψ π∗ ∗> , − , + , − , − ,
0
2( 2 ) 1( ) ( 1 )u i i i u ii W W W i Wπ γ π∗ ∗, , < ≤ = > , − ,

0
2 ( 1 1)u ii Wψ π ∗+ , − , − .

Here and in the rest of the paper, 1(condition) is the
Boolean operator equal to one if the condition holds.
When i I= , right parts of equations (5) and (7) should
be divided by 20

0 01 ( ) IWγ γ γ −∗− .

For states (0 1 1)Il W, , > + , it is easy to show that for
states (0,1, 1IW> + ),

1(0 1 ) (0 1 1)( ) IW
u u IWπ π λ μ − −, , = , , + /

and the sum of the steady-state probabilities is

1

(0 1 ) (0 1 1) 1
I

u u I
W

S W λπ π
μ

∞

∞
= +

⎛ ⎞
= , , = , , + / − .⎜ ⎟

⎝ ⎠
∑

Obviously, λ should be less than μ .

At last, we find (0 1 )uπ
∗ , , for 0 1IW< ≤ + , using the
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global balance equations written for IWl ,,1,0= :

0 2 1
1

(0 1 1) 1 [ ( 1 ) ( 1 )]
I

u u i u i
i

i W i Wμπ μπ ϕ π∗ ∗ ∗ ∗

=

, , = − , , + , ,∑
1

1 0 2 1
1 1

[ ( 1 ) 1( 1) ( 1 )]
iWI

u u
i k

i k k i kϕ π ϕ π
−

∗ ∗

= =

− , , + > , , ,∑∑

0(0 1 ) (1 ) (0 1 1) 1( 2) (0 1 2)u u uμπ β π λπ∗ ∗ ∗, , = − , , − − > , , −

1

1
I

i i i
i

A B∗ ∗ ∗⎛ ⎞
⎜ ⎟
⎝ ⎠

=

− + +Φ , > ,∑

where 2 0iA∗ = ,
1

3 0 2 1 1 0
1

( 1 ) ( 1 ) ( 1 )
iW

i u i u i u
k

A i W i W i kλπ α π α π
−

∗ ∗ ∗ ∗ ∗

=

= , , + , , + , ,∑
1

2 1
2

( 1 )
iW

u
k

i kα π
−

∗

=

+ , , ,∑
1

2
2

1( 1) ( 2)
iW

i i u
k

A W i kα π
−

∗ ∗

= −

= ≤ + , , − +∑

21( 2) ( 2)i u iW i Wα π∗ ∗≤ + , , −

for 3> ,
1

2
1

1( ) ( 1)
iW

i i u
k

B W i kβ π
−

∗ ∗

= −

= ≤ , , − +∑

21( 1) ( 1)i u iW i Wβ π∗ ∗≤ + , , −

for 2> ; 2iB∗ is defined similarly to 3iA∗ , substituting
0 2 1 2andβ β β β∗, , for 2 1 2andλ α α α∗, , , respectively;

1

2 21( ) ( ) 1( ) ( )
iW

i i u i u i
k

W i k W i Wϕ π ϕ π
−

∗ ∗ ∗ ∗

=

Φ = < , , + ≤ , , .∑

Summing all ( )u i kπ ∗ , , ,we find the steady-state pro-
babilities:

( )

( ) ( ) ( )u u u
j h m

i k i k j h mπ π π∗ ∗

, ,

, , = , , / , , .∑

In fact, calculation of steady-state probabilities is an
iterative process: using some initial values of 0d

slT , d
slT ∗ ,

and 1d
slT , we calculate transition and steady-state prob-

abilities, firstly, for the APQ model, and secondly, for
the TQ model. At last, we find modified values of

( )d
slT and use half sums of the modified and initial

values as new initial ones. We stop calculations when
absolute differences of consecutive values ( )d

slT be-
come less than a pre-defined small threshold.

3. Estimation of performance measures

In the section, we estimate firstly the average MAC
service time. Let us start with packets Transmitted after
Queueing (TaQ packets). This is the case when either
the packet is not the first in the batch, or the batch that
the packet belongs to arrives to non-empty queue.
Another packet category consists of packets Transmit-
ted without Queueing (TwQ packets). Obviously, the
average TaQ packet MAC service time is equal to

1d d
TaQ c slD T T∗= + For anAPQ, and

1u u
TaQ c slD T T∗= + for a TQ.

Now let us consider TwQ packets. Foran APQ, us-
ing the Main Assumption, we find that the average
TwQ packet MAC service time is

0( ) 2d d
TwQ c slD T T∗= + /

1d
slT+ . The average numbers of all packets and TwQ

packets arriving to a given APQ for a cycle are equal
to d

d cn T= Λ and 0
2 (1 )( )d d

d d d c sln q T Tρ ∗= Λ − + , where

0 0
0 1(1 )(1 ) d d dd d d

c c d sl sl d sl
d d

T T T T Tλ ρ λρ ρ
μ μ

⎡ ⎤
⎢ ⎥∗ ∗
⎢ ⎥∗ ∗⎢ ⎥
⎣ ⎦

⎡ ⎤−
= + − + + −⎢ ⎥

⎣ ⎦

is the average cycle duration. Therefore, a packet is a
TwQ one with probability

0(1 )( )d d d d
TwQ Twq d d c sl cn n q T T Tκ ρ ∗= / = − + / , (8)

and the sought average MAC service time for an APQ is

(1 )d d d d
d TwQ TaQ TwQ TwQM D Dκ κ= − + . (9)

For a TQ, the average MAC service time is defined
by the similar formula: (1 )u u u u

u TwQ TaQ TwQ TwQM D Dκ κ= − + ,
where we need to find the TwQ probability

u
TwQκ and

the average TwQ packet MAC service time
u
TwQD . We

can write them in the form:

0
0

0 10

1 ( 0)
iWu I

u uu
TwQ TwQ ik ik uu

i kc

q D s D i k
T
κκ π

κ = =

= , = , , ,∑∑

where

0 0
0 1

( 0)
iWI

u
ik u

i k

s i kκ π
= =

= , , .∑∑

Here iks and ikD are the average duration of cycle
( i k, , ), at the beginning of which the TQ is in state
( i k, , ), and the average service time for a TwQ packet
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arriving for the cycle ( 0)i k, , , respectively. Let us find
ikls and D ik :

2 11( 0)[ ( ) (1 ) ]ik ik
ik c ik u iks T Tθ δ η θ η∗= + > + + + −

0 01( 0)[ ( ) ]ik
ik tθ δ η+ = + + ,

where 0 1
ik ik

ikθ η η, , , and 2
ikη are defined accordingly

to <Table 1>; and

0 (1 )
2
ik

ik u ACK d ik
sD T tδ ρ ,= + + + + − Δ

where ( )ik D iF W kΔ = − with 1( )
ii i W D ik W F W, +< , Δ = with

i I< , and ( )
II W D IF W,Δ =

3

0

( ) 1( 2) [( 1) ](1 )
W

j
D c d

j

F W W j T Tω δ ω
−

∗

=

= > + + + −∑
2

11( 1)(1 ) [( 1) ( )]W p
cW W T tω ξ− ∗+ > − − + ,

ACKt is the average time of acknowledgment receipt
that happens in most cases during polling the next ter-
minal whose slot is not null. So

0[ (1 ) ] [ (1 ) ]ACK d d d p d d pt T tρ ρ ν ρ ρ ν= + − / + − .

Now let us estimate the average packet sojourn time
for both APQ and TQ ( MAC

dT and MAC
uT ). Obviously,

these measures can be found via the Little's formula:
MAC

d d d dT q L= /Λ and MAC
u u u uT q L= /Λ , so the main prob-

lem is to estimate the average lengths measured in
packets of an APQ ( dL ) and a TQ ( uL ). For an APQ,
we have d

d L cL S T= / , where

( ) ( ) ( )d d
dL c dS t π= ,∑

( )( ) [ ( )] 1( 0) 1
2 ( )

d
dd sl

d c sl d
d d c sl

TT T
q q T T

δ∗
∗

⎡ ⎤Λ −
= + + − > − ,⎢ ⎥+⎣ ⎦

and ( ) ( )d d
c c slt T T∗= + . Therefore,

20* )(
2

)0( d
slc

d

d
d

d
L TT

q
S +

Λ
=π

(1) 1 ( )
2

d
d dc sl d

d d c sl sl
d

T T q T T T
q

π δ
∗ ∗

∗ ∗ ∗⎧ ⎫+ Λ⎡ ⎤+ − + + + − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

++
− dd

d
ddd

d
TwQd l

q
D

μλμλ
π

/1
11

)/1(
)2( 1

where
11

2 1
d

u sl
d
TwQ

Td
d TwQ d D

D q δΛ −⎡ ⎤= − − .
⎣ ⎦ For a TQ, we use

the similar equation : u
u L cL S T= / , where

( )

( ) ( )u
uL ik u

i k

S i k s i kπ
, ,

= , , , , ,∑

( )
2

u
u ik

u u

i k s
q q

Λ
, , = +

2

1( 0) 1 u ACK
ik ik

c u

T t
T T

δθ
δ η∗

⎡ ⎤+ +
− > − .⎢ ⎥+ + +⎣ ⎦

At last, we obtain after simple transformations:

1
1 0( )u

u u TwQ cL q D Tκ κ− ∗ ∗= + / ,

where
1 1

1
1

( ) (0 1 ) ( )
IW

u u u IW Sκ π∗
∞

=

= + , , + + +∑

,1/)1,1,0(
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+
μ
λπ Iu W

1 1
2

uu u ACK
u TwQ u u

TwQ

T tD q
D
δ⎛ ⎞Λ + +

= − − ,⎜ ⎟⎜ ⎟
⎝ ⎠

0 010
( ) 0

(0 1 0) ( ) ( )
2

u
uu ik u

i k iu

s i k s i k
q

κ π π∗

, , : >

Λ
= , , + , , , , .∑

4. Numerical results

Let us adopt the developed analytical method to evaluate
the PCF performance, depending on parameters of traf-
fic and network configuration, and to compare the
Standard Polling (SP), the Binary Scheme (BS) with

8I = and 2i
iW = , and the Optimal Polling (OP). The OP

form is determined, using the analytical method to find
the optimal set ( )iI W, providing the minimal value uM

or MAC
uT for each point of space ( )d u d u d uN q q T T,Λ ,Λ , , , , .

Thus, the OP scheme requires following the change of
uplink and downlink traffic parameters and correcting
on-line the set ( )iI W, .

The main fraction of traffic transmitted through a
wireless network is related to TCP/IP protocol stack
operation, when arrival rates of uplink and downlink
packets are approximately the same, since each TCP
packet (which mean length is assumed to be 576 bytes
that corresponds to multi-hop connections) is followed
by a TCP acknowledgement (we assume its length to
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be equal to 80 bytes). Therefore, we consider the case

d uΛ = Λ = Λ and d uq q q= = in the numerical resea-
rch. Moreover, we use the following probability dis-
tribution of packet length m : 576m = and 80m = bytes
with probabilities 0.7 and 0.3 for the AP and with
probabilities 0.3 and 0.7 for a terminal, what approx-
imately corresponds to the case, when a third of TCP
connections carries out downlink traffic. Thus, basing
on this discussion and IEEE 802.11b specifications,
we adopt the following parameter values with our nu-
merical research : 11-Mbps channel rate, 10δ μ= s,

0 217t μ= s, 528dT μ= s, and 383uT μ= s.
In <Figure 5>, we show how the average service time

uM depends on the load, that is, on Λ , for different N
and polling policies. The OP form has been determined
for 1I = with varying 1W from 2 to max 256W = , and the
found optimal values 1 1

optW W= versus Λ are shown in
<Figure 6> by solid curves. Here and further in the nu-
merical research, we deal only with one-stage optimal
policies, since it appears that increasing the number I
of backoff stages does not allow improving the network
performance.
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Figure 5. Mean service time versus traffic rate with
0 1q = .

Let us look at curves in <Figure 5>. We see that
both dynamic polling schemes are much better than
the SP with non-saturated queues : the mean service
time for the BS and OP is more than ten times less
than the one for the SP with low load. Comparing to
the BS, the OP decreases uM in two-three times with
moderate load. However, with low load, it is not es-

sential which of dynamic polling schemes is adopted,
since each terminal spends most of time at the stage
with window maxW .
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Figure 7. Mean service time versus traffic
burstiness with 10N =

In <Figure 7> we show how the traffic burstiness
characterized by q affects the mean service time.
Here each curve has been obtained with constant value

qΛ/ equal to incoming packet rate for each queue. As
<Figure 5>, <Figure 7> shows that a dynamic polling
is always better than the standard one, while the OP
improves essentially the uM value, comparing with
the BS, for moderate values of q and qΛ/ . With large

, sΛ -1
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qΛ/ , the difference between the BS and OP perform-
ance is much less within 10 %. Moreover, it appears
(see also <Figure 5> that, in contrary to a dynamic
policy, with the SP the mean service time only slightly
depends on both Λ and q , and their ratio.
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Figure 8. Mean sojourn time versus traffic rate
with 0 1q = .

<Figure 8> shows the mean sojourn time MAC
uT being

another performance measure versus load. Here OP
curves have been obtained with minimizing MAC

uT , but
not uM , and the corresponding optimal windows 1

optW

are shown in <Figure 6> by dotted curves. As one can
expected, the relation between MAC

uT values for three
polling schemes under consideration is nearly the
same as the relation of the corresponding uM .

Sum MAC MAC
u dT T+ is very important performance in-

dex for networks with TCP traffic, because just this
sum is equal to the average sojourn time of TCP seg-
ment represented firstly by a TCP packet and then by its
TCP acknowledgment in the wireless network MAC
queues. This time can be a determining component of
such important TCP protocol parameter as Round Trip
Time. Considering similar behavior of dependencies

( )MAC
uT Λ and ( )MAC

dT Λ (see <Figure 5 and Figure 7), it
is easy to predict the form of curves MAC MAC

u dT T+ vs. Λ
given at <Figure 9> for 10N = and 20N = . To obtain
the OP curve in the figure, we have used the optimizing

optW curve shown by the dashed line in <Figure 6>.
As a concluded result, we would like to point out

that the optimization criterion choice is not essential.

Specifically, it appears that the relative difference in
uM values obtained for the OP with 1

optW minimizing
uM and MAC

uT does not exceed 5%.
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Figure 9. Sum of sojourn times versus traffic rate with
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5. Conclusion

To improve IEEE 802.11 PCF performance under nor-
mal load, we proposed and studied a generic dynamic
policy for polling terminals, depending on observed
traffic parameters. The proposed policy is based on
concepts of polling backoff and polling stage and al-
lows minimizing the performance wastes related to un-
successful polling attempts. Describing the network
queues changes by discrete-time Markov chains, we
have developed an analytical method to estimate the
average service time and the average sojourn time for
each network queue. Accordingly to extensive numer-
ical results, the developed method is very efficient
with comparing different polling schemes as well as
for choosing and optimizing the dynamic polling poli-
cy form, depending on parameters of traffic and net-
work configuration. We believe that the proposed
adaptive polling policy and its modelling method
should be useful also for other centrally-controlled
wireless protocols, such as IEEE 802.15 and 802.16.

References

Al-Rousan, M. and Abu-Rahmeh, O. (2008), “The impact of DCF
and PCF protocols in mobile WLANs”, International Journal

, sΛ -1



150 Chesoong Kim Andrey Lyakhov

of Modelling and Simulation, 28(1), 205-4206.
ANSI/IEEE Std 802.11(1999), Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications.
Bruno, R., Conti M., and Gregori, E. (2002), Bluetooth: Architec-

ture, Protocols and Scheduling Algorithms, Cluster Comput-
ing, 5, 117-131.

Charzinski, J. (2000), Activity Polling and Activity Contention
in Media Access Control Protocols, IEEE JSAC, 18(9),
1562-1571.

Choi, S. (2001), PCF vs. DCF : Limitations and Trends, IEEE
802.11-01/154, January.

Kim, Y. J. and Suh, Y. J. (2004), Adaptive Polling MAC Sche-
mes for IEEE 802.11 Wireless LANs, Proc. of ISCIT,
October 2004, 2528-2532.

Kopsel, A., Ebert, J. P., and Wolisz, A. (2000), A Performance
Comparison of Point and Distributed Coordination Function
of an IEEE 802.11 WLAN in the Presence of Real-Time
Requirements, Proc. of 7thInt. Workshop MoMuc2000,
Waseda, Japan, October.

Qiao, D., Choi, S., Soomoro, A., and K. G. Shin, K. G. (2002),
Energy-Efficient PCF Operation of IEEE 802.11a Wireless
LAN, Proc. of INFOCOM 2002, New York, June.

Sharon, O. and Altman, E. (2001), An Efficient Polling MAC for
Wireless LANs, IEEE/ACMTrans. Networking, 9(4), 439- 451.

Veeraraghavan, M., Cocker, N. and Moors, T. (2001), Support

of Voice Services in IEEE 802.11 Wireless LANs, in Proc.
IEEE INFOCOM 2001, 488-497.

Vishnevsky, V. M. and Lyakhov, A. I. (2001), Adaptive Features
of IEEE 802.11 Protocol: Utilization, Tuning and Modifica-
tions, Proc. of 8th HP-OVUA Conference, Berlin, June.

Vishnevsky, V. M. and Lyakhov, A. I. (2004), Dynamic Polling in
Centrally-controlled Wireless Networks, Proc. of Int. Scientif-
ic-Practical Conference (Communications-2004), Bishkek,
Kyrgyz Republic, August 22-29, 121-129.

Vishnevsky, V. M., Lyakhov, A. I. and Bakanov A. S. (2000),
Method for Performance Evaluation of Wireless Networks
with Centralized Control, Automation and Remote Control,
60, 629-636.

Vishnevsky, V. M., Lyakhov, A. I. and Guzakov, N. N. (2004),
An Adaptive Polling Strategy for IEEE 802.11 PCF, Proc. of
7th Int. Symp. on Wireless Personal Multimedia Communica-
tions (WPMC 2004), Abano Terme, Italy, 87-91, September
12-15.

Ziouva, E. and Antonakopoulos, T. (2002), Efficient Voice Com-
munications over IEEE802.11 WLANs Using Improved PCF
Procedures, Proc. of Third International Network Confer-
ence (INC 2002), University of Plymouth, UK, July 16-18.

Ziouva, E. and Antonakopoulos, T. (2003), A Dynamically Adap-
table Polling Scheme for Voice Support in IEEE802.11 Net-
works, IEEE Computer Communications, 26(2), 129-142.


