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This paper introduces the modeling and analysis of a 
discrete-time, two-phase queueing system for both 
exhaustive batch service and gated batch service. Packets 
arrive at the system according to a Bernoulli process and 
receive batch service in the first phase and individual 
services in the second phase. We derive the probability 
generating function (PGF) of the system size and show that 
it is decomposed into two PGFs, one of which is the PGF of 
the system size in the standard discrete-time Geo/G/1 queue 
without vacations. We also present the PGF of the sojourn 
time. Based on these PGFs, we present useful performance 
measures, such as the mean number of packets in the 
system and the mean sojourn time of a packet. 
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I. Introduction 

Recently, discrete-time queueing systems have been 
extensively used in the design and performance analysis of 
telecommunication networks. In particular, they can be used 
to model various mechanisms in Broadband Integrated 
Services Digital Network (B-ISDN), which is expected to 
integrate the transmission of voice, video, and data in a single 
network. Asynchronous Transfer Mode (ATM) is the 
standard switching technique adopted by ITU-T [1] for the 
implementation of B-ISDN. It provides high flexibility of 
network access, dynamic bandwidth allocation on demand, 
and flexible capacity allocation. In such an environment, all 
information, such as continuous data stream, voice, and video, 
is digitalized and segmented into small packets called cells 
[2]. Since ATM is based on a packet switching principle, all 
events, such as arrivals and departures of packets, are allowed 
only at regularly spaced points in time. Thus, the underlying 
mechanism of this system is represented adequately by 
discrete-time queues [3]-[7]. 

Two-phase queueing systems have been discussed in the past 
for their applications in various areas, such as computer, 
communication, manufacturing, and other stochastic systems. 
In many computer and communication service systems, the 
situation in which arriving packets receive batch mode service 
in the first phase followed by individual services in the second 
phase is common. Recent applications of this queueing system 
have been discussed by Krishna and Lee [8], Doshi [9], and 
Kim and Chae [10], to name a few. Most of the papers on two-
phase queueing systems have mainly concentrated on 
continuous-time models, but to the best of our knowledge, no 
studies have dealt with performance analysis of the discrete-
time two-phase queueing system. 
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In this paper, we consider a discrete-time, two-phase 
Geo/G/1 queueing system. Packets arrive at the system 
according to a Bernoulli process and receive batch service in 
the first phase followed by individual services in the second 
phase. This type of queueing problem can be easily found in 
various practical situations. 

Consider a central processor connected to a number of 
peripherals or distributed subprocessors. The central processor 
collects the jobs arriving at the peripherals or the distributed 
subprocessors in batches and processes them sequentially. 
When there is no online job for collection, the processor can be 
switched to process offline jobs, to update storage devices, or to 
attend to maintenance or repair work. As soon as a job arrives, 
the server is turned on and starts to serve jobs in batch mode. 

Another application is the inventory problem in which the 
arriving orders are collected, and when the order arrives, their 
service requirements, such as due date, quantity, and quality, 
are analyzed initially in batch mode. This is followed by 
individual services of the batch. As the system empties, which 
means there are no orders, stock can be replenished to prepare 
for the next orders. 

One special case of our model is a discrete-time, two-phase 
queueing model in which an arriving packet requires a 
deterministic service time that could be greater than one slot. 
This queueing model has gained importance in recent years 
because of a number of potential practical applications in 
slotted digital communication systems, such as ATM switching 
elements, circuit-switched TDMA systems, and traffic 
concentrators [11]. 

One motivation of this paper is the fact that discrete-time 
queues are more useful in modeling and performance analysis 
of communication networks and computer systems in a 
digitalized environment. In addition, continuous-time results 
can be obtained from their discrete-time counterparts by 
imposing appropriate limits. 

The rest of the paper is organized as follows. Section II gives 
assumptions of our system. Section III presents the probability 
generating functions (PGFs) of the system size and the system 
sojourn time for the exhaustive batch service model. Section IV 
presents the results for the gated batch service model. Finally, 
section V concludes this paper. 

II. The System and Assumptions 

We assume that the time axis is divided into fixed-length 
time intervals called slots and that service times can be started 
and completed only at slot boundaries and that their durations 
are integral multiples of slot durations. We adopt a late arrival 
system with delayed access (LAS-DA) where packets arrive 
late during a slot and get delayed access to the server if they 

arrive to find the system empty. The slot in which a packet 
arrives is not counted in calculating its sojourn time. [3], [4], 
[12]. 

This paper considers a system that satisfies the following 
assumptions. 

Assumptions 

Packets arrive at the system according to a Bernoulli process 
with a mean interarrival time 1/λ. All arrivals go into Q1, the 
batch service queue. The batch service times {Bi, i=1,2, …} are 
independent and identically distributed (i.i.d.) random variables 
with distribution function )(tB , finite mean E(B), and PGF 
B(z). On the completion of the batch service, the entire batch is 
transferred to Q2, the individual service queue. The transferring 
time from Q1 to Q2 is assumed to be zero. The individual 
service times {Si, i=1,2, …} are i.i.d. random variables with 
distribution function S(t), finite mean E(S), and PGF S(z). We 
assume that the service in Q2 is FIFO based on the original 
order of arrival. The server is assumed to work in one of the 
following modes: 

i) Case A: Exhaustive batch service 

When Q2 is empty, the server returns to Q1. The transferring 
time from Q2 to Q1 is also assumed to be zero. If one or more 
packets are in Q1, the server will start the batch service 
immediately. Packets arriving during the on-going batch 
service are included in the ongoing batch service. If no packet 
is in Q1 when the server transfers from Q2, the server waits 
until a packet arrives. On the arrival of a packet, the batch 
service begins and proceeds as before. On completion of this 
batch service, all packets that received the batch service are 
moved to Q2 and individual services start immediately. When 
all individual services for this batch are completed, the server 
moves to Q1, and so on. 

ii) Case B: Gated batch service 

The basic mechanism is similar to that of Case A. The only 
difference is that the batch service includes only those packets 
that were present when the batch service started. Packets 
arriving during the batch service have to wait for the next batch 
service to start. 

Finally, we assume that the system has an infinite queueing 
capacity and it is stationary. Thus, all packets arriving at the 
system are eventually served, so that ,1)( <= SEλρ where 
E(S) denotes the mean individual service time. Remark 1 
makes some comments on this statement. 

Remark 1. The system under study belongs to a class of 
Geo/G/1 queues with generalized vacations in the sense that 
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both idle periods and first-phase service periods act as if they 
were a vacation period. Therefore, the stability condition 
(λE(S)<1) of the Geo/G/1 queue with generalized vacations is 
applicable to our system [4]. 

The notations in this paper are listed as follows: 
Q: the system size right after the beginning of a batch 

service 
Q1: the system size right after the completion of a batch 

service 
Q2: the system size right after the end of the individual 

services of the batch 
B:  the batch service time 
S:   the individual service time 
M:  the system size at an arbitrary slot boundary 
Wq: the sojourn time of the test packet until its individual 

service 
( ) ( ) ( )zQzQzQ 21  , , : PGF of 21  , , QQQ  

r(z): PGF of M 
B(z), S(z): PGF of B, S 
Wq(z): PGF of Wq 
q0 ≡ Pr(Q2= 0): the probability that the system is empty at the 

end of a second phase service 
( )BEλ=γ , ( )SEλρ =  

III. Exhaustive Batch Service: System Size and 
Sojourn Time Distributions 

1. Regeneration Cycle Analysis 

From the definitions of the above notation, the following 
relations can easily be seen: 

1Q  = Q + the number of arrivals during the batch service 
2Q  = the number of arrivals during the individual services 

of the 1Q  packets 
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Because the PGFs of the number of arrivals during B and S 
are given by ( )λzλB −+1  and ( )λzλS −+1 , respectively, 
[4], the above relations are translated into 

           ( ) ( ) ).1(1 λzλBzQzQ −+⋅=             (1) 

   ( ) ( )( ).112 λzλSQzQ −+=              (2) 

   ( ) [ ] .)( 002 zqqzQzQ +−=               (3) 

Combining (1), (2) and (3), we get the following functional 
relationship for ( ) :zQ  

( ) ( ) ( ) ).1(1)1()1( 0 zqλλzλSλBλzλSQzQ −−−+−+⋅−+=
 

     (4) 

We will now present the closed form expression for ( )zQ in 
(4). To this end, we first present the closed form expression for 

0q  in (4) using the procedures in Sumita [13] and Doshi [9]. 
Let us define the following notation. 

,1)( zzL −=  
),1()(,)()0( λzλBzbzzb −+==  

),1()()(,)( )1()0( λzλSzszszzs −+===  
.1)),(())(()( )1()1()( ≥== −− nzsszsszs nnn  

We can use successive substitutions in (4). Then we get 
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See appendix for the detailed derivation of (5). 
If we set z = 0 in both sides of (4), we get 

( ) ( ) ,0)0()0( 0
)1()1( =− qsbsQ  

from which we get 

( ) ( ).)0()0( )1()1(
0 sQsbq =              (6) 

Combining (5) and (6), we get 
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from which we get 
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If we substitute (7) into (5), we get the final closed form 
expression for )(zQ  as follows: 
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Differentiating (1), (2), and (3) with respect to z and setting   
z = 1, we get 

,)()( 1 γ+= QEQE                 (9) 

,)()( 12 QEρQE =                 (10) 

.)()( 02 qQEQE +=               (11) 

From (9), (10), and (11), we get 

.
1

)( 0
1 ρ

qQE
−
+

=
γ                 (12) 

Based on the quantities (9), (10), (11), and (12), we present a 
regeneration cycle analysis to derive the probabilities (16a), 
(16b), and (16c), which are crucial to determining the system 
size distribution. 

Note that the regeneration points of our system are those 
instants at which the system becomes empty right after the 
completions of individual services. We call the interval 
between two such successive regeneration points a 
regeneration cycle. Dividing the regeneration cycle into the 
initial idle period and K subservice cycles, each of which 
consists of a batch service and the individual services of the 
batch, we see that E(K)=1/q0. Let D be the number of arrivals 
during the initial delay, which consists of the idle period and K 
first-phase batch service periods in the cycle and Γ  be the 
number of arrivals during the delay cycle (or the regeneration 
cycle). Then, based on the delay cycle arguments [4], we can 
find the following expected values. 

,11)()(1)(
0

γ
q

BEλKEDE +=⋅+=          (13)  
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Let cT  be the length of the regeneration cycle. Using 
Wald’s equation, the expected length of the regeneration cycle, 

),( cTE is given by the following: 

),()()( AEETE c Γ=               (15) 

where E(A) denotes the expected interarrival time, which is 
given by 1−λ . 

Let TP stand for the test packet. Based on renewal reward 
arguments and on the property of Bernoulli arrivals see time 
averages (BASTA) [14], we can derive the following 
probabilities from (12), (13), (14), and (15). 

Pr(TP arrives during an individual service period) 
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Pr(TP arrives during a batch service period) 
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Pr(TP arrives during an idle period) 
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2. The System Size Distribution 

In this subsection, we present the system size distribution 
based on the probabilities (16a), (16b), and (16c). 

As stated earlier, the key observation is that the system under 
study belongs to a class of Geo/G/1 queues with generalized 
vacations [4, pp. 90-93] such that both idle periods and first-
phase periods act as if they were vacation periods. In Geo/G/1 
queues with generalized vacations, the PGF of the system size 
at an arbitrary slot boundary is given by the product of two 
PGFs: one is the PGF of the system size of an ordinary 
Geo/G/1 queue (without vacations) at an arbitrary slot 
boundary, and the other is the conditional PGF of the system 
size at an arbitrary slot boundary given that the server is in a 
vacation period. This property is called stochastic 
decompositions [4]. Note that this decomposition property 
holds for a broad class of continuous- and discrete-time queues 
with generalized vacations [15], [16]. 

The system size PGF at an arbitrary slot boundary for the 
standard discrete-time Geo/G/1 queue without vacations is 

given by ( )( ) ( )
( ) zzs

zszρ
−
−− 11 , where )1()( λzλSzs −+=  [4]. 

To obtain the conditional system size PGF at an arbitrary slot 
boundary given that the server is in a vacation period, we use 
the approach of Chae et al. [17], which is based on the 
conditioning of the system state. This approach holds for a 
broad class of discrete-time queues with generalized vacations 
[16]. 

Note that the conditional system size PGF at an arbitrary slot 
boundary given that the server is in a vacation period is equal to 
the conditional system size PGF at TP’s arrival-epoch given 
that TP arrives during a vacation period by BASTA [14]. The 
conditional system size PGF at TP’s arrival-epoch given that 
TP arrives during a vacation period consists of two parts 
depending on whether TP arrives during an idle period or 
during a first-phase period. If TP arrives during an idle period 



242   Tae-Sung Kim et al. ETRI Journal, Volume 25, Number 4, August 2003 

with a conditional probability ,
0

0

q
q
+γ

 it is clear that the PGF 

is given by (1). If TP arrives during a first-phase period with a 

conditional probability ,
0q+γ

γ the PGF is given by 
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, where ).1()( λzλBzb −+=  

Putting all these together, we finally get the PGF of the 
system size at an arbitrary slot boundary (or at TP’s arrival 
epoch), 
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Note that the terms q0 and Q(z) contained in (17) are, 
respectively, given by (7) and (8). Differentiating (17) with 
respect to z and setting it at 1=z , we get the expected system 
size, 
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Note that the term q0 contained in (17) and (18) is given by 
(7). 

Remark 2. As stated earlier, using appropriate limits, we can 
get results corresponding to (17) and (18) for the continuous-
time, two-phase M/G/1 queue. If we assume the length of a slot 
is equal to a constant ∆ , we can consider the transition of the 
above results (17) and (18) for the continuous-time system by 
using the limit 0→∆  [4]. 

3. The System Sojourn Time Distribution 

To find qW , the sojourn time of the test packet until its 
individual service, we use the arrival time approach of Chae et 
al. [17]. We need to consider three cases: 

• Case 1: The arriving TP that finds the server is idle has to 
wait during the batch service time for itself. Therefore, the PGF 
of the sojourn time of a packet that arrives during the idle 
period is given by 

( ) ).(zBidlezWq =                (19) 

• Case 2: The test packet that arrives during the first phase 
batch service has to wait 

i) the remaining batch service time, plus 
ii) the individual service times of the packets that arrive 

during the elapsed batch service time, plus 
iii) the individual service times of Q packets. 

i) + ii) is easily obtained by using the joint PGF of the 
elapsed time and the remaining time [4]. Thus, the PGF of the 
sojourn time of a packet that arrives during the batch service 
time is given by the following: 

( ) { } .
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−
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(20) 

• Case 3: The test packet that arrives during the second phase 
individual service has to wait if we let T be the total individual 
service times of the packets that arrive during the first phase 
batch service plus Q packets, 

i) the remaining time of T period, plus 
ii) the individual service times of the packets that arrive 

during the elapsed time of T period, plus 
iii) the next batch service time. 

The PGF of the sojourn time of a packet that arrives during 
the individual services is given by the following. 

( ) { } ,
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where ( ) ( ) .)(1)()( zSQλzSλBzT ⋅−+=  

The probabilities of each case are determined by (16a), 
(16b), and (16c), respectively. Unconditioning (19), (20), and 
(21) with the probabilities of each case, the PGF of Wq, the 
sojourn time of an arbitrary packet until its individual service, 
becomes 
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Note that the terms q0 and Q(z) contained in (22) are, 
respectively, given by (7) and (8). Differentiating (22) with 
respect to z and setting z =1, we obtain the mean sojourn time 
E(Wq) as follows: 
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(23) 

Note that the term q0 contained in (23) is given by (7). 
Equation (23) can also be obtained by Little’s law using (18). 
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We can also get results corresponding to (22) and (23) for the 
continuous-time, two-phase M/G/1 queue using appropriate 
limits. Thus, if we assume the length of a slot equal to a 
constant ∆ , we can consider the transition of the above results 
of (22) and (23) for the continuous-time system by taking the 
limit 0→∆  [4], [14]. 

IV. Gated Batch Service: System Size and Sojourn 
Time Distributions 

In this section, we consider the gated batch service model, 
which we described in section II. 

From the definitions of the notation in section II, the 
following relations are clear: 

1Q =Q + (the number of arrivals during the batch service) 

2Q =(the number of arrivals during the individual services of 
the 1Q  packets) + (the number of arrivals during the 
batch service) 
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The above relations are translated into the following PGF 
forms: 

   ( ) ),1()(1 λzλBzQzQ −+⋅=            (24) 

   ( ) ( ) ),1()1(2 λzλBλzλSQzQ −+⋅−+=       (25) 

   ( ) [ ] .)( 002 zqqzQzQ +−=              (26) 

Combining (25) and (26), we get the following functional 
relationship for ( ).zQ  

( ) ( ) ).1()1()1( 0 zqλzλBλzλSQzQ −−−+⋅−+=   (27) 

Following a procedure close to that in section III, the closed 
form expression for ( )zQ  and q0 are given, respectively, by 
the following: 
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The appendix gives the detailed derivations of (28) and (29). 
If we substitute (29) into (28), we get the final closed form 

expression for ( )zQ  for gated batch service as follows: 
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Differentiating (25) and (26) with respect to z and setting z = 1, 
we obtain 

( ) ( ) ,2 γ+= QEρQE               (31) 

( ) ( ) .02 qQEQE +=               (32) 

Combining (31) and (32), we get 
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Taking the same steps as given in section III.2, we can derive 
the PGF of the system size ( )zr  and its expected value 

( )ME  as follows: 
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Note that the terms q0 and ( )zQ  contained in (34) and (35) 
are, respectively, given by (29) and (30). ( )zQ  and ( )QE  
determine the system size distribution. Note further that the 
expressions for ( )zr  in (17) and (34) are the same, but the 
contents of ( )zQ  are different. 

The analysis for the system sojourn time distribution is 
similar to that for the exhaustive batch service. Specifically, 
(19) is still valid and only (20) and (21) need minor 
modifications. We now need to multiply ( )zB  and 

)1)(( λzSλB −+  to the right hand sides of (20) and (21), 
respectively. Consequently, we have the PGF of the sojourn 
time ( )zWq  and its expected value ( )qWE  as follows: 
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                                             (36) 
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( )

( )
( )

.
)1(212 0

22

ρλq
BEλ

ρ
ρSEλWE q −

+
+

+
−

−
=

γ
γ

      (37) 

Note that the terms q0 and ( )zQ  contained in (36) and (37) 
are, respectively, given by (29) and (30). Equation (37) can also 
be obtained by Little’s law using (35). 

Remark 3. As stated earlier, using appropriate limits, we can 
get results corresponding to (33), (34), (35) and (36) for the 
continuous-time, two-phase M/G/1 queue. Thus, if we assume 
the length of a slot is equal to a constant ∆ , we can consider 
the transition of the above results of (33), (34), (35), and (36) 
for the continuous-time system by using the limit 0→∆    
[4], [14]. 

Remark 4. From (18) and (35) (or (23) and (37)), we 
conclude that implementing exhaustive batch service reduces 
the mean system size and the mean sojourn time compared 
with gated batch service. A simple comparison between the 
gated batch service model and the exhaustive batch service 
model shows that the mean system size of the gated batch 
service model is larger than that of the exhaustive batch service 

model by 
0

2

q+γ
γ , and that the mean sojourn time of the gated 

batch service model is larger than that of the exhaustive batch 

service model by 
( )0

2

qλ +γ
γ . These differences are consistent 

with the discrete-time version of Little’s formula [4]. 

V. Conclusions 

In this paper, we analyzed a discrete-time, two-phase 
Geo/G/1 queueing system for both exhaustive batch service 
and gated batch service. We identified our model as belonging 
to a class of Geo/G/1 queue with generalized vacations. From 
this observation, we presented the PGFs of the system size and 
the system sojourn time based on a decomposition property. 
Based on these PGFs, we presented useful performance 
measures, such as the mean number of packets in the system 
and mean sojourn time of a packet. 

The results in this paper may be useful for system designers 
and practitioners involved in investigating the performance of 
slotted digital communication systems and related areas. The 
results and methodology presented in this paper can be used to 
study discrete-time, two-phase queueing systems with various 
threshold policies, such as multiple and single vacations and 
N-policy. 

Appendix 1. Detailed Derivation of (5) 

If we express (4) using the notation defined in section III.1, 

we get 

( ) ( ) ( ) ( ).)()()( )0(
0

)1()1( zsLqzsbzsQzQ −⋅=     (A1) 

If we set )()1( zsz =  in both sides of (A1), we get 

( ) ( ) ( ) ( ).)()()()( )1(
0

)2()2()1( zsLqzsbzsQzsQ −⋅=  (A2) 

Substituting (A2) into (A1), we get 

( ) ( ) ( )
( ) ( ) ( ).)()()(

)()()()(
)0(

0
)1()1(

0

)1()2()2(

zsLqzsbzsLq
zsbzsbzsQzQ

−−

⋅=
    (A3) 

If we set )()1( zsz =  in both sides of (A3), we get 

( ) ( ) ( ) ( )
( ) ( ) ( ).)()()(

)()()()(
)1(

0
)2()2(

0

)2()3()3()1(

zsLqzsbzsLq
zsbzsbzsQzsQ

−−

⋅=
  (A4) 

Substituting (A4) into (A1), we get 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ).)()()(

)()()(
)()()()(

)0(
0

)1()1(
0

)1()2()2(
0

)1()2()3()3(

zsLqzsbzsLq

zsbzsbzsLq
zsbzsbzsbzsQzQ

−−

−

⋅=

   (A5) 

Note that, if 1<ρ , 1=z  is the unique solution, inside the 
unit circle 1≤z , of 

( ).)1( zsz =  

This implies that for any z  with 1≤z , 

( ) ,as,1)( ∞→→ nzs n             (A6) 

and         ( ) .as,0)()( ∞→→ nzsL n            (A7) 

Thus, we can use successive substitutions in (A1) using (A6) 
and (A7). Then we get 

( ) ( ) ( ) ( ) ,)()()(
1

)(

0

)(
0

1

)( ∏∑∏
=

∞

=

∞

=

−=
k

j

j

k

k

j

j zsbzsLqzsbzQ  

which is reduced to (5). 

Appendix 2. Detailed Derivations of (28) and (29) 

If we express (27) using the notation defined in section III.1, 
we get 

( ) ( ) ( ) ( ).)()( )0(
0

)1( zsLqzbzsQzQ −⋅=       (A8) 

If we set )()1( zsz =  in both sides of (A9), we get 
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( ) ( ) ( ) ( ).)()()()( )1(
0

)1()2()1( zsLqzsbzsQzsQ −⋅=    (A9) 

Substituting (A9) into (A8), we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ).)()()()( )0(
0

)1(
0

)1()2( zsLqzbzsLqzbzsbzsQzQ −−⋅=
(A10) 

If we set )()1( zsz =  in both sides of (A10), we get 
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⋅=
  (A11) 

Substituting (A11) into (A8), we get 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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Thus, we can use successive substitutions in (A8) using (A6) 
and (A7). Then we get 
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which is reduced to (28). 
If we set 0=z  in both sides of (A8), we get 

( ) ( ) ,00)0( 0 =− qbsQ  

from which we get 

( ) ( ).)0(00 sQbq =             (A14) 

Combining (A13) and (A14), we get 
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from which we get 
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This is (29). 
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