미래 경제 성장 동력으로 부상하고 있는 사물인터넷은 이미 생활과 밀접한 분야에서는 도입이 활발하게 이루어지고 있으나, 잠재된 보안위협은 여전히 잔존하고 있다. 특히 인터넷 상의 유해 정보는 스마트홈 및 스마트시티의 활성화로 인해 폭발적으로 설치된 CCTV에 할당된 IP 정보 및 심지어 접속 포트 번호들이 포털 검색 결과 및 페이스북, 트위터와 같은 소셜 미디어 등에 공개되어 간단한 툴로도 보다 쉽게 해킹이 가능하다. 사용자들이 많이 사용하는 포털 검색 데이터 및 소셜 미디어 데이터의 보안취약점 및 불법 사이트 정보들을 데이터 분석하여, 보안취약성 같은 위험 요소가 내포된 데이터 및 사회적 문제를 야기하는 불법 사이트에 대한 대응을 신속하게 수행할 수 있게 지원하는 빅데이터 분석 시스템이 필요하다. 본 논문에서는 빅데이터 분석 시스템 설계를 위해 하둡 기반 빅데이터 분석 시스템과 스파크 기반 빅데이터 분석 시스템 연구를 통해 요구사항을 도출하여 요구사항에 맞게 Splunk 플랫폼을 활용한 유해 정보 탐지를 위한 빅데이터 분석 시스템을 설계하였다.
안전사고의 위험성이 상존하는 작업 현장에서 안전사고 발생 시 신속한 조치를 위해서는 생체 데이터를 실시간으로 파악하는 것이 중요하다. 그 중 혈중산소포화도는 인간이 생명을 유지하는 데 있어서 가장 중요한 요소이므로 작업자의 안전관리를 위한 선제 대응으로 상황에 따라서 실시간 산소포화도 측정과 모니터링이 필요하다. 건강 및 생명 위험 보호복을 착용한 작업자로부터 실시간 생체 신호를 수신하고, 외부 시스템에서 작업자의 위험 상태를 공유 및 분석함으로써 작업자의 현재 상태를 진단하고 작업자에게 발생할 수 있는 응급 상황에 효율적으로 대응할 수 있다. 본 논문에서는 사고 현장에서 응급 상황에 대처하기 위해 보호복 착용자의 유해 가스와 산소포화도 위험도를 실시간 모니터링할 수 있고, 착용자의 활동성과 안전성을 보장할 수 있는 웨어러블 산소포화도 측정 플랫폼 기술을 제안하였다. 추후 제안한 시스템의 결과를 통해 확인한 한계점을 극복하고, 움직임 보정 등 개선된 생체 데이터를 플랫폼에 적용한다면 유해 가스 환경뿐만 아니라 응급 환자를 대상으로 하는 병원이나 가정에서도 활용할 수 있을 것이라 기대한다.
연구목적: 본 연구의 목적은 우리나라 수도권을 대상으로 권역별 특성이 인구이동에 미치는 영향을 분석하는 것이다. 연구방법: 이를 위해 수도권의 66개 기초지자체는 2010~2016년 인구이동자료 분석을 통해 3개의 권역으로 구분하고, 단계적 회귀분석기법을 적용하여 권역 내부의 인구이동 결정요인과 권역 간 인구이동 결정요인을 파악하였다. 연구결과: 주요 분석결과로 수도권 전 지역에서의 인구이동에서는 지역의 아파트 수 증가율, 단독·다세대주택 증가율, 고용자 수 증가율, 제조업체 증가율, 지식·문화·여가산업 증가율, GRDP증가율, 지하철역 신규개통이 중요하다는 것이 확인되었다. 특히 아파트 수 증가율, 지식·문화·여가산업 증가율, GRDP 증가율, 지하철 역 신규개통은 인구유입을 늘리는데 긍정적으로 작용하였다. 결론: 권역별로 지식·문화·여가산업 증가율이 1권역의 인구유입에 크게 기여했으며, 2권역에서는 지하철역 신규개통과 GRDP증가율이 주요 요인인 것으로 나타났다. 아파트 수 증가율과 지하철역 증가율은 3권역에서 주요 요인으로 작용하였다.
The 2-dimensional arrangement method of nodes has been used in most of RF (Radio Frequency) based communication network simulations. However, this method is not useful for the an none-obstacle 3-dimensional space networks in which the propagation delay speed in communication is very slow and, moreover, the values of performance factors such as the communication speed and the error rate change on the depth of node. Such a typical example is an underwater communication network. The 2-dimensional arrangement method is also not useful for the RF based network like some WSNs (Wireless Sensor Networks), IBSs (Intelligent Building Systems), or smart homes, in which the distance between nodes is short or some of nodes can be arranged overlapping with their different heights in similar planar location. In such cases, the 2-dimensional network simulation results are highly inaccurate and unbelievable so that they lead to user's erroneous predictions and judgments. For these reasons, in this paper, we propose a method to place uniformly and randomly communication nodes in 3-dimensional network space, making the wireless link with neighbor node possible. In this method, based on the communication rage of the node, blocks are generated to construct the 3-dimensional network and a node per one block is generated and placed within a block area. In this paper, we also introduce an algorithm based on this method and we show the performance results and evaluations on the average time in a node generation and arrangement, and the arrangement time and scatter-plotted visualization time of all nodes according to the number of them. In addition, comparison with previous studies is conducted. As a result of evaluating the performance of the algorithm, it was found that the processing time of the algorithm was proportional to the number of nodes to be created, and the average generation time of one node was between 0.238 and 0.28 us. ultimately, There is no problem even if a simulation network with a large number of nodes is created, so it can be sufficiently introduced at the time of simulation.
무선 기술의 고도화 및 이동통신 기술의 인프라가 빠르게 성장함에 따라 AI 기반 플랫폼을 적용한 시스템이 사용자의 주목을 받고 있다. 특히 사용자의 취향이나 관심사 등을 이해하고, 선호하는 아이템을 추천해주는 시스템은 고도화된 전자상거래 맞춤형 서비스 및 스마트 홈 등에 적용되고 있다. 그러나 이러한 추천 시스템은 다양한 사용자들의 취향이나 관심사 등에 대한 선호도를 실시간으로 반영하기 어렵다는 문제가 있다. 본 연구에서는 이러한 문제를 해소하기 위해 GRU(Gated Recurrent Unit) 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템을 제안하였다. 본 시스템에서는 사용자의 취향이나 관심사를 실시간으로 반영하기 위해 Fuzzy-AHP를 적용하였다. 또한 대중들의 관심사 및 해당 영화의 내용을 분석하여 사용자가 선호하는 요인과 유사한 영화를 추천하기 위해 GRU 언어 모델 기반의 모델을 적용하였다. 본 추천 시스템의 성능을 검증하기 위해 학습 모듈에서 사용된 스크래핑 데이터를 이용하여 학습 모델의 적합성을 측정하였으며, LSTM(Long Short-Term Memory) 언어 모델과 Epoch 당 학습 시간을 비교하여 학습 수행 속도를 측정하였다. 그 결과 본 연구의 학습 모델의 평균 교차 검증 지수가 94.8%로 적합하다는 것을 알 수 있었으며, 학습 수행 속도가 LSTM 언어 모델보다 우수함을 확인할 수 있었다.
현재 가정이나 사무실 및 공장 등 전력 수요가 증가하면서 전체 전력 사용량도 증가하고 있다. 전력사용의 증가는 에너지 절약에 대한 의식 변화가 나타나면서 대기전력에 대한 관심도도 높아졌다. 가정용 및 사무용 기기는 대기상태에서도 전력을 소모하고 있다. 이에 대기전력의 저감에 대한 필요성이 매우 커지고 있으며 대기전력 1W이하를 목표로 하고 있다. 지능형 콘센트는 근거리 무선망을 이용하여 홈네트워크에 연결하고 콘센트에 연결된 램프나 가전기기의 대기전력을 차단하거나 절감시키는 것이다. 본 연구에서는 근거리 무선망(Zigbee)를 이용하여 콘센트에 연결된 조명램프나 가전기기에서 사용하는 전기의 사용량을 원격으로 모니터링 하고 대기전력을 차단할 수 있는 모니터링 시스템과 지능형 콘센트을 개발하고자 한다. 또한, 개발하는 지능형 콘센트와 모니터링 시스템은 휴대용 장치(리모콘)를 이용하여 사용자가 손쉽게 대기전력을 차단할 수 있다.지능형 콘센트는 대기전력을 저감시킬 뿐만 아니라 화재 방재 시스템에도 응용 가능할 것이다. 대기하는 전력을 차단 하는 장치는 지능형 콘센트와 대기전력 차단 스위치를 포함하므로 누전과 화재를 방지할 것이다.
데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.