Wearable oxygen saturation measurement platform for worker safety management

작업자의 안전관리를 위한 웨어러블 산소포화도 측정 플랫폼

  • 이윤주 (한국전자기술연구원 콘텐츠응용연구센터) ;
  • 송재종 (한국전자기술연구원 정보미디어연구센터) ;
  • 유선국 (연세대학교 의과대학 의학공학교실)
  • Received : 2022.09.01
  • Accepted : 2022.10.14
  • Published : 2022.10.31

Abstract

It is important to grasp biometric data in real time for prompt action in the event of a safety accident at a work site where the risk of safety accidents exists. Among them, blood oxygen saturation is the most important factor in maintaining human life, so real-time oxygen saturation measurement and monitoring is necessary according to the situation as a preemptive response for worker safety management. By receiving real-time bio-signals from workers wearing health and life-risk protective clothing, and sharing and analyzing the worker's risk status in an external system, it is possible to diagnose the worker's current condition and efficiently respond to emergencies that may occur to the worker. In this paper, we propose a wearable oxygen saturation measurement platform technology that can monitor the risk of harmful gases and oxygen saturation of the wearer in real time and ensure the wearer's activity and safety in order to cope with emergency situations at the scene of an accident. If we overcome the limitations identified through the results of the proposed system later and apply improved biodata such as motion correction to the platform, we expect that it will be usable not only in hazardous gas environments, but also in hospitals and homes for emergency patients.

안전사고의 위험성이 상존하는 작업 현장에서 안전사고 발생 시 신속한 조치를 위해서는 생체 데이터를 실시간으로 파악하는 것이 중요하다. 그 중 혈중산소포화도는 인간이 생명을 유지하는 데 있어서 가장 중요한 요소이므로 작업자의 안전관리를 위한 선제 대응으로 상황에 따라서 실시간 산소포화도 측정과 모니터링이 필요하다. 건강 및 생명 위험 보호복을 착용한 작업자로부터 실시간 생체 신호를 수신하고, 외부 시스템에서 작업자의 위험 상태를 공유 및 분석함으로써 작업자의 현재 상태를 진단하고 작업자에게 발생할 수 있는 응급 상황에 효율적으로 대응할 수 있다. 본 논문에서는 사고 현장에서 응급 상황에 대처하기 위해 보호복 착용자의 유해 가스와 산소포화도 위험도를 실시간 모니터링할 수 있고, 착용자의 활동성과 안전성을 보장할 수 있는 웨어러블 산소포화도 측정 플랫폼 기술을 제안하였다. 추후 제안한 시스템의 결과를 통해 확인한 한계점을 극복하고, 움직임 보정 등 개선된 생체 데이터를 플랫폼에 적용한다면 유해 가스 환경뿐만 아니라 응급 환자를 대상으로 하는 병원이나 가정에서도 활용할 수 있을 것이라 기대한다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(행정안전부)의 재원으로 지역맞춤형 재난안전 문제해결 기술개발사업의 일환으로 수행된 연구임 (No. 20010305).

References

  1. J. Ko, H. Kim, "A Study on the Monitoring System for Emergency Recognition of Elderly People Living Alone," Journal of KIIT, Vol. 12, No. 3, pp. 61-68, Mar. 2014.
  2. Wei Chen, Idowu Ayoola, Sidarto Bambang Oetomo, Loe Feijs, "Non-invasive blood oxygen saturation monitoring for neonates using reflectance pulse oximeter," Proceedings of the Conference on Design, Automation and Test in Europe Conference & Exhibition, pp. 1530-1535, Dresden, Germany, Mar. 2010.
  3. Y. Lee, and C. Song, "Oxygen saturation meter design for condition monitoring of hazmat wearers," Institute of Embedded Engineering of Korea, Vol. 43, pp. 413-415, 2021.
  4. S. J. Kim, D. Y. Hwang, G. J. Chun, J. Y. Lee, S. K. Chung, G. W. Yoon, "Signal processing methodand diagnostics algorithm for arterial oxygen-saturation measurement," Korean Journal of Optics and Photonics, Journal of the Optical Society of Korea, Vol. 11, No. 6, pp. 452-456, Dec. 2000.
  5. Y. S. Park, K. E. Kim, H. S. Lim, D. G. Yang, W. Huh, "A Study on Implementation of Pulse Oximeter System," Proceeding on the Korean Society of Medical & Biological Engineering Spring Conference, Vol. 15, No. 1, pp. 116-119, May, 1993.
  6. S. J. Jang, J. D. Kim, G. R. Choi and G. H. Park. "Algorithm for measuring oxygen saturation in a PPG sensor with dynamic noise," Journal of the Korean Society of Sensors, Vol. 27, No. 3, pp. 192-198. 2018.
  7. Y. Jingjing, H. Shangfu, Z. Xiao, G. Benzhen, L. Yu, D. Beibei and L. Yun, "Family Health Monitoring System Based on the Four Sessions Internet of Things," Telecommunication Computing Electronics and Control, Vol. 13, No. 1, pp. 314-320, Mar. 2015.
  8. H. S. Kim, J. S. Seo and J. Seo, "A Daily Activity Monitoring System for Internet of Things-Assisted Living in Home Area Networks," International Journal of Electrical and Computer Engineering (IJECE), Vol. 6, No. 1, pp. 399-405, Feb. 2016. https://doi.org/10.11591/ijece.v6i1.pp399-405
  9. R. R. Adiputra, S. Hadiyoso, Y. Sun Hariyani, "Internet of Things: Low Cost and Wearable SpO2 Device for Health Monitoring," International Journal of Electrical and Computer Engineering (IJECE), Vol. 8, No. 2, pp. 939-945, Apr. 2018. https://doi.org/10.11591/ijece.v8i2.pp939-945
  10. C. Lee, S. Oh, D. Choi, "Design and Implementation of U-Health System for Active Oxygen Measurement Data based on Mobile Phone," Smart Media Journal, Vol. 1, No. 4, pp. 52-58, Dec. 2012.
  11. Y. Lee, Y. Kim, "Design of Building Biomertic Big Data System using the Mi Band and MongoDB," Smart Media Journal, Vol. 5, No. 4, pp. 124-130, Dec. 2016.
  12. Y. Lin, P. Huang, W. Wu, J. Lin, S. Tang "SpO2 Surveillance for Hiking," Proceedings on European IFMBE Conference, Vol. 37, pp. 686-688, Budapest, Hungary, Sep. 2011.
  13. S. Han, Y. Kim, "Algorithm for reduction of motion artifact generated in SpO2 measurement," Proceedings on the Korean Institute of Information and Communication Sciences Conference, pp. 860-863, Oct. 2003.
  14. S. Kang, Y. Park, A. Oh, J. Jean, "A Study on the Development of Pulse Oximeter based on Standard Protocol," Proceedings of the Korean Institute of Information and Communication Sciences Conference, pp. 751-753, May, 2011.
  15. J. Park, and C. Song, "Implement of Real-time Monitoring Platform for Risk Prediction and Control of Hazardous Gas Leakage Sites," KICS Fall Conference, 2021.
  16. O. Deschambault, A. Gherbi, C. Legare, "Efficient Implementation of the MQTT Protocol for Embedded Systems," Journal of Information Processing System, Vol. 13, No. 1, pp. 26-39, Feb. 2017. https://doi.org/10.3745/JIPS.04.0028