• Title/Summary/Keyword: small signal gain

Search Result 212, Processing Time 0.035 seconds

A Design of LDO(Low Dropout Regulator) with Enhanced Settling Time and Regulation Property (정착시간과 레귤레이션 특성을 개선한 LDO(Low Dropout Regulator)의 설계)

  • Park, Kyung-Soo;Park, Jea-Gun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.126-132
    • /
    • 2011
  • A conventional LDO(Low Dropout Regulator) uses one OPAMP and one signal path. This means that OPAMP's DC Gain and Bandwidth can't optimize simultaneously within usable power. This also appears that regulation property and settling time of LDO can't improve at the same time. Based on this idea, a proposed LDO uses two OPAMP and has two signal path. To improve regulation property, OPAMP where is used in the path which qualities DC gain on a large scale, bandwidth designed narrowly. To improve settling time, OPAMP where is used in the path which qualities DC gain small, bandwidth designed widely. A designed LDO used 0.5um 1P2M process and provided 200mA of output current. A line regulation and load regulation is 12.6mV/V, 0.25mV/mA, respectively. And measured settling time is 1.5us in 5V supply voltage.

Implementation of low-noise, wideband ultrasound receiver for high-frequency ultrasound imaging (고주파수 초음파 영상을 위한 저잡음·광대역 수신 시스템 구현)

  • Moon, Ju-Young;Lee, Junsu;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.238-246
    • /
    • 2017
  • High frequency ultrasound imaging typically suffers from low sensitivity due to the small aperture of high frequency transducers and shallow imaging depth due to the frequency-dependent attenuation of ultrasound. These limitations should be overcome to obtain high-frequency, high- resolution ultrasound images. One practical solution to the problems is a high-performance signal receiver capable of detecting a very small signal and amplifying the signal with minimal electronic noise addition. This paper reports a recently developed low-noise, wideband ultrasound receiver for high-frequency, high-resolution ultrasound imaging. The developed receiver has an amplification gain of up to 73 dB and a variable amplification gain range of 48 dB over an operating frequency of 80 MHz. Also, it has an amplification gain flatness of ${\pm}1dB$. Due to these high performances, the developed receiver has a signal-to-noise ratio of at least 8.4 dB and a contrast-to-noise ratio of at least 3.7 dB higher than commercial receivers.

A High-Frequency Signal Test Method for Embedded CMOS Op-amps

  • Kim Kang Chul;Han Seok Bung
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • In this paper, we propose a novel test method to effectively detect hard and soft faults in CMOS 2-stage op-amps. The proposed method uses a very high frequency sinusoidal signal that exceeds unit gain bandwidth to maximize the fault effects. Since the proposed test method doesn't require any complex algorithms to generate the test pattern and uses only a single test pattern to detect all target faults, therefore test costs can be much reduced. The area overhead is also very small because the CUT is converted to a unit gain amplifier. Using HSPICE simulation, the results indicated a high degree of fault coverage for hard and soft faults in CMOS 2-stage op-amps. To verify this proposed method, we fabricated a CMOS op-amp that contained various short and open faults through the Hyundai 0.65-um 2-poly 2-metal CMOS process. Experimental results for the fabricated chip have shown that the proposed test method can effectively detect hard and soft faults in CMOS op-amps.

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.

The Characteristics of Noise Figure in Bi-directional Fiber Ring Laser Gain Clamped EDFA (양방향 발진고리형 고정이득 EDFA에서의 잡음지수 특성)

  • Kim, Ik-Sang;Kim, Chang-Bong;Lee, Hyeon-Jae;Myeong, Seung-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.55-62
    • /
    • 2002
  • FRLGC(Fiber Ring laser Gain Clamped) EDFA Is demonstrated for an automatic gain control in hi-directional ADM(Add Drop Multiplexer) node configuration. Specifically, we investigate hi-directional characteristics of noise figure. Assuming a hi-directional small signal input, noise figures for forward or backward signal input are calculated using average inversion algorithm, according to the propagating directions and lasing wavelengths of a compensating signal. The operating condition of FRLGC-EDFA may be optimized with a backward lasing and short lasing wavelength in the aspect of hi-directional noise figure characteristics.

Implementation of Adaptive Noise Canceller with Instantaneous Gain (순시 이득을 이용한 적응잡음제거기 구현)

  • Lee, Jae-Kyun;Kim, Chun-Sik;Lee, Chae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.756-763
    • /
    • 2009
  • The Least Mean Square (LMS) algorithm is often used to restore signal corrupted by additive noise. A major defect of this algorithm is that the excess Mean Square Error (EMSE) increases linearly according to speech signal power. This result reduces the efficiency of performance significantly due to the large EMSE around the optimum value. Choosing a small step size solves this defect but causes a slow rate of convergence. The step size must be optimized to satisfy a fast rate of convergence and minimize EMSE. In this paper, the Instantaneous Gain Control (IGC) algorithm is proposed to deal with the situation as it exists in speech signals. Simulations were carried out using a real speech signal combined with Gaussian white noise. Results demonstrate the superiority of the proposed IGC algorithm over the LMS algorithm in rate of convergence, noise reduction and EMSE.

Relationships between input-output stability and exponentially stable periodic orbits

  • Chung, Chung-Choo;Houser, John
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.155-158
    • /
    • 1997
  • In this paper, we present new results concerning the relationship between the input-output and Lyapunov stability of nonlinear system possessing a periodic orbit. Definition of small-signal finite-gain L$\sub$p/ stability around periodic orbit is introduced. We show L$\sub$p/ stability of exponentially stable periodic orbit using quadratic Lyapunov functions for the periodic orbit. The L$\sub$2/ gain analysis is presented with Hamiltonian-Jacobi inequality along with an example.

  • PDF

Monolithic X-band Mixer (모노리식 X-band 혼합기)

  • Jun, Yong-Il;Park, Hyung-Moo;Ma, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.426-429
    • /
    • 1988
  • A simple design method of a single balanced MMIC mixer is described. It uses small signal S11 and capacitive load for the input matching circuit and the output loading circuit, respectively. It is found that the conversion gain of the FET mixer is independent of FET gate width. The fabricated mixer has 2.5 dB conversion gain at 9 GHz with 50 ohm IF load and 2 dBm local oscillator power.

  • PDF

Definition of Antenna Diversity Gain in User-Distributed 3D-Random Line-of-Sight

  • Kildal, Per-Simon;Carlberg, Ulf;Carlsson, Jan
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.86-92
    • /
    • 2013
  • The present paper defines diversity gain for stationary users. This deals in particular with gathering the received signal statistics over possible user positions and orientations in space rather than over time, and to define a meaningful diversity gain related to the cumulative improvement of the performances of the 1% users with the worst receiving conditions. The definition is used to evaluate diversity gain for some typical small antennas in an extreme environment with only line-of-sight (LOS). The LOS environment is regarded as user-distributed 3D-random LOS caused by the statistics of an ensemble of stationary users with arbitrary orientations in the horizontal plane (2D), and with arbitrary orientations of their wireless devices in the vertical plane. Thus, an overall 3D-random distribution of user orientation is assumed.

Improving Low Frequency Signal Reproduction in TV Audio (TV 스피커의 저주파수 신호 재생 개선)

  • Arora Manish;Oh Yoonhark;Kim SeoungHun;Lee Hyuckjae;Jang Seongcheol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.275-278
    • /
    • 2004
  • In TV sound system, loudspeakers are subject to severe size constraints. The small size of the transducer affects the low frequency signal performance of the system. Bass signal performance contributes significantly to the user perceived sound quality and a good bass signal reproduction is essential. Increasing the sound energy in the bass signal range is an unviable solution since the gain required are exceedingly high and signal distortion occurs because of the speaker overload. Recently methods are being proposed to invoke low frequency illusion using psychoacoustic phenomena of the missing fundamental. This paper proposes a simple and effective signal processing method to create bass signal illusion in TV speakers using the missing fundamental effect, at a complexity of 12 MIPS on Motorola 56371 audio DSP.

  • PDF