• Title/Summary/Keyword: small scales

Search Result 378, Processing Time 0.026 seconds

Astronomical Instruments with Two Scales Drawn on Their Common Circumference of Rings in the Joseon Dynasty

  • Mihn, Byeong-Hee;Choi, Goeun;Lee, Yong Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • This study examines the scale unique instruments used for astronomical observation during the Joseon dynasty. The Small Simplified Armillary Sphere (小簡儀, So-ganui) and the Sun-and-Stars Time-Determining Instrument (日星定時儀, Ilseong-jeongsi-ui) are minimized astronomical instruments, which can be characterized, respectively, as an observational instrument and a clock, and were influenced by the Simplified Armilla (簡儀, Jianyi) of the Yuan dynasty. These two instruments were equipped with several rings, and the rings of one were similar both in size and in scale to those of the other. Using the classic method of drawing the scale on the circumference of a ring, we analyze the scales of the Small Simplified Armillary Sphere and the Sun-and-Stars Time-Determining Instrument. Like the scale feature of the Simplified Armilla, we find that these two instruments selected the specific circumference which can be drawn by two kinds of scales. If Joseon's astronomical instruments is applied by the dual scale drawing on one circumference, we suggest that 3.14 was used as the ratio of the circumference of circle, not 3 like China, when the ring's size was calculated in that time. From the size of Hundred-interval disk of the extant Simplified Sundial in Korea, we make a conclusion that the three rings' diameter of the Sun-and-Stars Time-Determining Instrument described in the Sejiong Sillok (世宗實錄, Veritable Records of the King Sejong) refers to that of the middle circle of every ring, not the outer circle. As analyzing the degree of 28 lunar lodges (lunar mansions) in the equator written by Chiljeongsan-naepyeon (七政算內篇, the Inner Volume of Calculation of the Motions of the Seven Celestial Determinants), we also obtain the result that the scale of the Celestial-circumference-degree in the Small Simplified Armillary Sphere was made with a scale error about 0.1 du in root mean square (RMS).

Multi-scale Driving of Turbulence and Astrophysical Implications

  • Yoo, Hyunju;Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • Turbulence is a common phenomenon in astrophysical fluids such as the interstellar medium (ISM) and the intracluster medium (ICM). In turbulence studies it is customary to assume that fluid powered by an energy injection on a single scale. However, in astrophysical fluids, there can be many different driving mechanisms that act on different scales simultaneously. In this work, we assume multiple energy injection scale (2${\surd}$12 and 15

  • PDF

Vibrations of an axially accelerating, multiple supported flexible beam

  • Kural, S.;Ozkaya, E.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.521-538
    • /
    • 2012
  • In this study, the transverse vibrations of an axially moving flexible beams resting on multiple supports are investigated. The time-dependent velocity is assumed to vary harmonically about a constant mean velocity. Simple-simple, fixed-fixed, simple-simple-simple and fixed-simple-fixed boundary conditions are considered. The equation of motion becomes independent from geometry and material properties and boundary conditions, since equation is expressed in terms of dimensionless quantities. Then the equation is obtained by assuming small flexural rigidity. For this case, the fourth order spatial derivative multiplies a small parameter; the mathematical model converts to a boundary layer type of problem. Perturbation techniques (The Method of Multiple Scales and The Method of Matched Asymptotic Expansions) are applied to the equation of motion to obtain approximate analytical solutions. Outer expansion solution is obtained by using MMS (The Method of Multiple Scales) and it is observed that this solution does not satisfy the boundary conditions for moment and incline. In order to eliminate this problem, inner solutions are obtained by employing a second expansion near the both ends of the flexible beam. Then the outer and the inner expansion solutions are combined to obtain composite solution which approximately satisfying all the boundary conditions. Effects of axial speed and flexural rigidity on first and second natural frequency of system are investigated. And obtained results are compared with older studies.

A SIMPLIFIED TREATMENT OF GRAVITATIONAL INTERACTION ON GALACTIC SCALES

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • I present a simple scheme for the treatment of gravitational interactions on galactic scales. In anal- ogy with known mechanisms of quantum field theory, I assume ad hoc that gravitation is mediated by virtual exchange particles-gravitons-with very small but non-zero masses. The resulting den- sity and mass profiles are proportional to the mass of the gravitating body. The mass profile scales with the centripetal acceleration experienced by a test particle orbiting the central mass, but this comes at the cost of postulating a universal characteristic acceleration $a_0{\approx}4.3{\times}10^{-12}msec^{-2}$ (or $8{\pi}a_0{\approx}1.1{\times}10^{-10}msec^{-2}$). The scheme predicts the asymptotic flattening of galactic rotation curves, the Tully-Fisher/Faber-Jackson relations, the mass discrepancy-acceleration relation of galaxies, the surface brightness-acceleration relation of galaxies, the kinematics of galaxy clusters, and "Renzo's rule" correctly; additional (dark) mass components are not required. Given that it is based on various ad-hoc assumptions and given further limitations, the scheme I present is not yet a consistent theory of gravitation; rather, it is a "toy model" providing a convenient scaling law that simplifies the description of gravity on galactic scales.

A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates

  • Shooshtari, A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.543-560
    • /
    • 2006
  • In this paper, first, the equations of motion for a rectangular isotropic plate have been derived. This derivation is based on the Von Karmann theory and the effects of shear deformation have been considered. Introducing an Airy stress function, the equations of motion have been transformed to a nonlinear coupled equation. Using Galerkin method, this equation has been separated into position and time functions. By means of the dimensional analysis, it is shown that the orders of magnitude for nonlinear terms are small with respect to linear terms. The Multiple Scales Method has been applied to the equation of motion in the forced vibration and free vibration cases and closed-form relations for the nonlinear natural frequencies, displacement and frequency response of the plate have been derived. The obtained results in comparison with numerical methods are in good agreements. Using the obtained relation, the effects of initial displacement, thickness and dimensions of the plate on the nonlinear natural frequencies and displacements have been investigated. These results are valid for a special range of the ratio of thickness to dimensions of the plate, which is a characteristic of the Multiple Scales Method. In the forced vibration case, the frequency response equation for the primary resonance condition is calculated and the effects of various parameters on the frequency response of system have been studied.

An analysis on the achievement characteristics among regional scales : Based on the 2010, 2011 National Assessment Educational Achievement results in elementary mathematics subject (국가수준 학업성취도 평가 결과에 나타난 지역 규모별 특성 분석 -2010년, 2011년 초등학교 수학과 결과를 중심으로)

  • Jo, Yun Dong;Cho, Seong Min;Choi, In Seon
    • The Mathematical Education
    • /
    • v.52 no.3
    • /
    • pp.303-317
    • /
    • 2013
  • Recently in South Korea, various methods are followed in decreasing educational gap between region and social classes through school education. The National Assessment Educational Achievement(NAEA) intends to strengthen responsibility of school education and manage quality of curriculum. Besides, the NAEA intends to bridge achievement gap which is one of educational gaps by grasping the characteristics of academic ability to guarantee basic academic ability. There is not much research about the educational gap among regional scales. Therefore in this study, to examine the achievement characteristics among regional scales closely, we analyse the 2010, 2011 NAEA results in elementary mathematics subject and explore characteristics of items which have sharp differences between local population sizes. The results of the analysis has been showed that the educational gap between 'big-sized cities' and 'small and midium-sized cities' has been increased, but the overall educational gap among regional scales has been decreased.

Flood Stage Evaluation for Vegetated Models in River Scales (하천규모에 따른 식생모델의 홍수위 검토)

  • Lee, Jong-Seok;Kim, Byeong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.509-518
    • /
    • 2010
  • This study aims to evaluate for flood stage on vegetated patterns by clearance space rate (CSR) using the numerical models divided into large, medium and small river in river scales with watershed area or design flood discharge. Using the HEC-RAS (1D) and RMA-2 (2D) numerical models, evaluated results of the design flood stages before vegetated modeling of these rivers which CSR in the 1D are obtained over 100% at all points in large river and medium river of except upper part 2 sections, but small river is showed about average 46.0%. It is judge that evaluated results in the 2D are obtained average 101.5% in large river, 96.7% in medium river, 71.1% in small, respectively and because of 1D mainly used to formulate of the river's master plan. However, after vegetated modeling, CSR in case of 1D showed with 91.8% in large river, 74.2% and 38.3% in medium and small rivers, respectively and 2D showed with 95.5% in large river, 86.72 and 37.0% in medium and small rivers, respectively. It is estimate that evaluated results using the 2 numerical models by the vegetated modeling are less affected the CSR for large river in a large area more than the cross section area in medium and small rivers.

Influence of shear preload on wave propagation in small-scale plates with nanofibers

  • Farajpour, M.R.;Shahidi, A.R.;Farajpour, A.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.407-420
    • /
    • 2019
  • In the present work, an attempt is made to explore the effects of shear in-plane preload on the wave propagation response of small-scale plates containing nanofibers. The small-scale system is assumed to be embedded in an elastic matrix. The nonlocal elasticity is utilized in order to develop a size-dependent model of plates. The proposed plate model is able to describe both nanofiber effects and the influences of being at small-scales on the wave propagation response. The size-dependent differential equations are derived for motions along all directions. The size-dependent coupled equations are solved analytically to obtain the phase and group velocities of the small-scale plate under a shear in-plane preload. The effects of this shear preload in conjunction with nanofiber and size effects as well as the influences of the elastic matrix on the wave propagation response are analyzed in detail.

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF

On the wing venation and scales of Dendrolimus spectabilis Butler (I) (솔나방의 시맥(翅脈)과 인편(鱗片)에 관(關)한 연구(硏究) (I))

  • Yun, Jeong Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.2 no.1
    • /
    • pp.59-65
    • /
    • 1962
  • The objects of this experiment are to find out the local variation of the Dendrolimus Spectabilis Butler, of which sample was first collecteted 15 bodies of male and 35 bodies of female adult at Suwon area. the wing veins and the scale shape have been observed through the microscope (100) and the scale size (from the bottom of the scale to the top of the lobe) has also been measured by the micrometer. The results of this experiment are as follows: 1. There is nodifference between the venation of the male body and that of the female body. Also we can not find any differences between the right and the left wing, and between each body. The fore wings consit of 13 longitudinal veins and the only one "V" shape cross vein which is between the 5th and 6th vein. The hind wings consist of 9 longitudinal veins and the only one "V" shape cross vein which is mentioned above. 2. The scale types are divided into 4 Groups in its shape. (A) The scales of I Group are short and the lower parts of them almost look like a circle, having a small projection at their bottom. The upper parts of them have 2 or 10 lobes. We can find the lobes with fine hairs or the lobes without them at the top of the scales. (B) The scales of II Group are longer than that of I Group. The shape of the lower parts of the scales is similar to that of I Group. The upper parts of the scales have 2 or 10 lobes. (C) The scales of III Group are long and almost alike in a long wedgeshape. The upper parts of the scales have 2 Or IO lobes and we can find long fine hairs at the top of each lobe. (D) The scales of IV Group are long and the shape of the lower parts of the scales is similar to that of III Group. The lobes are short and not sharp. We can find 2 or 9 lobes. 3. The scales of I Group and II Group are distributed on the whole surface except on the outer margin. The most scales of III Group are distributed on the wing base. The scales of IV Group are distributed on the outer margin only. The scales with 4 or 5 lobes are most widely distributed not considering their Group or distributing parts. 4. In I Group the variation of the scale length become gradually greater as the number of the lobes are increasing. In II, III, IV Group, however, the variation of the scale length is in direct opposition to the above mentioned. The variation of the scale width becomes pretty small in any Groups and the scale width become wider as the number of the lobes are increasing. 5. The source of the wing colouration is pigmnetal colour, and the wing colouration is expressed by the amount of brown and white scales.

  • PDF