DOI QR코드

DOI QR Code

A SIMPLIFIED TREATMENT OF GRAVITATIONAL INTERACTION ON GALACTIC SCALES

  • Trippe, Sascha (Department of Physics and Astronomy, Seoul National University)
  • Received : 2012.11.16
  • Accepted : 2013.01.17
  • Published : 2013.02.28

Abstract

I present a simple scheme for the treatment of gravitational interactions on galactic scales. In anal- ogy with known mechanisms of quantum field theory, I assume ad hoc that gravitation is mediated by virtual exchange particles-gravitons-with very small but non-zero masses. The resulting den- sity and mass profiles are proportional to the mass of the gravitating body. The mass profile scales with the centripetal acceleration experienced by a test particle orbiting the central mass, but this comes at the cost of postulating a universal characteristic acceleration $a_0{\approx}4.3{\times}10^{-12}msec^{-2}$ (or $8{\pi}a_0{\approx}1.1{\times}10^{-10}msec^{-2}$). The scheme predicts the asymptotic flattening of galactic rotation curves, the Tully-Fisher/Faber-Jackson relations, the mass discrepancy-acceleration relation of galaxies, the surface brightness-acceleration relation of galaxies, the kinematics of galaxy clusters, and "Renzo's rule" correctly; additional (dark) mass components are not required. Given that it is based on various ad-hoc assumptions and given further limitations, the scheme I present is not yet a consistent theory of gravitation; rather, it is a "toy model" providing a convenient scaling law that simplifies the description of gravity on galactic scales.

Keywords

References

  1. Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. 1999, The Cosmic Triangle: Revisiting the State of the Universe, Science, 284, 1481 https://doi.org/10.1126/science.284.5419.1481
  2. Barrena, R., Biviano, A., Ramella, M., Falco, E. E., & Seitz, S. 2002, The Dynamical Status of the Cluster of Galaxies 1E0657-56, A&A, 386, 816 https://doi.org/10.1051/0004-6361:20020244
  3. Binney, J., & Tremaine, S. 2008, Galactic Dynamics, 2nd edn. (Princeton: Princeton University Press)
  4. Bondi, H., & Samuel, J. 1997, The Lense-Thirring Effect and Mach's Principle, Phys. Letters A, 228, 121 https://doi.org/10.1016/S0375-9601(97)00117-5
  5. Cardone, V. F., Radicella, N., & Parisi, L. 2012, Constraining Massive Gravity with Recent Cosmological Data, Phys. Mod. Rev. D, 85, 124005 https://doi.org/10.1103/PhysRevD.85.124005
  6. Dubinski, J., Mihos, J. C., & Hernquist, L. 1999, Constraining Dark Halo Potentials with Tidal Tails, ApJ, 526, 607 https://doi.org/10.1086/308024
  7. Faber, S. M., & Jackson, R. E. 1976, Velocity Dispersions and Mass-to-Light Ratios for Elliptical Galaxies, ApJ, 204, 668 https://doi.org/10.1086/154215
  8. Famaey, B., & McGaugh, S. S. 2012, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Relativity, 15, 10 https://doi.org/10.12942/lrr-2012-10
  9. Gavazzi, R., Treu, T., Rhodes, J. D., et al. 2007, The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii, ApJ, 667, 176 https://doi.org/10.1086/519237
  10. Goldhaber, A. S., & Nieto, M. M. 2010, Photon and Graviton Mass Limits, Rev. Mod. Phys., 82, 939 https://doi.org/10.1103/RevModPhys.82.939
  11. Griffith, D. 2008, Introduction to Elementary Particles (Weinheim: Wiley-VCH)
  12. Hernandez, X., & Lee, W. H. 2008, The Tightening of Wide Binaries in dSph Galaxies through Dynamical Friction as a Test of the Dark Matter Hypothesis, MNRAS, 387, 1727 https://doi.org/10.1111/j.1365-2966.2008.13373.x
  13. Hinterbichler, K. 2012, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671 https://doi.org/10.1103/RevModPhys.84.671
  14. Jee, M. J., Mahdavi, A., Hoekstra, H., et al. 2012, A Study of the Dark Core in A520 with the Hubble Space Telescope: The Mystery Deepens, ApJ, 747, 96 https://doi.org/10.1088/0004-637X/747/2/96
  15. Kim, J.-H., Park, C., Rossi, G., Lee, S. M., & Gott, J. R. III. 2011, The New Horizon Run Cosmological N-Body Simulations, JKAS, 44, 217
  16. Kroupa, P. 2012, The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology, PASA, 29, 395 https://doi.org/10.1071/AS12005
  17. Lang, K. R. 2006, Astrophysical Formulae. Vol. I, 3rd edn. (Berlin: Springer)
  18. Lee, J., & Komatsu, E. 2010, Bullet Cluster: a Challenge to ACDM Cosmology, ApJ, 718, 60 https://doi.org/10.1088/0004-637X/718/1/60
  19. Markevitch, M., Govoni, F., Brunetti, G., & Jerius, D. 2005, Bow Shock and Radio Halo in the Merging Cluster A520, ApJ, 627, 733 https://doi.org/10.1086/430695
  20. McGaugh, S. S. 2004, The Mass Discrepancy-Acceleration Relation: Disk Mass and the Dark Matter Distribution, ApJ, 609, 652 https://doi.org/10.1086/421338
  21. Milgrom, M. 1983, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, ApJ, 270, 365 https://doi.org/10.1086/161130
  22. Ostriker, J. P., & Peebles, P. J. E. 1973, A Numerical Study of the Stability of Flattened Galaxies: Or, Can Cold Galaxies Survive?, ApJ, 186, 467 https://doi.org/10.1086/152513
  23. Rubin, U. C., Ford, W. K. Jr., & Thonnard, N. 1980, Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii, from NGC4605 (R = 4 kpc) to UGC2885 (R = 122 kpc), ApJ, 238, 471 https://doi.org/10.1086/158003
  24. Sancisi, R. 2004, The Visible Matter - Dark Matter Coupling, in: Ryder, S. D., et al. (eds.), Dark Matter in Galaxies, IAU Symposium, 220, 233
  25. Sparke, L. S., & Gallagher, J. S. III. 2007, Galaxies in the Universe, 2nd edn. (Cambridge: Cambridge University Press)
  26. Tully, R. B., & Fisher, J. R. 1977, A New Method of Determining Distances to Galaxies, A&A, 54, 661
  27. Zwicky, F. 1933, Die Rotverschiebung von Extragalaktischen Nebeln, Helvet. Phys. Acta, 6, 110

Cited by

  1. The “graviton picture”: a Bohr model for gravitation on galactic scales?1 vol.93, pp.2, 2015, https://doi.org/10.1139/cjp-2014-0158