Browse > Article
http://dx.doi.org/10.5303/JKAS.2013.46.1.41

A SIMPLIFIED TREATMENT OF GRAVITATIONAL INTERACTION ON GALACTIC SCALES  

Trippe, Sascha (Department of Physics and Astronomy, Seoul National University)
Publication Information
Journal of The Korean Astronomical Society / v.46, no.1, 2013 , pp. 41-47 More about this Journal
Abstract
I present a simple scheme for the treatment of gravitational interactions on galactic scales. In anal- ogy with known mechanisms of quantum field theory, I assume ad hoc that gravitation is mediated by virtual exchange particles-gravitons-with very small but non-zero masses. The resulting den- sity and mass profiles are proportional to the mass of the gravitating body. The mass profile scales with the centripetal acceleration experienced by a test particle orbiting the central mass, but this comes at the cost of postulating a universal characteristic acceleration $a_0{\approx}4.3{\times}10^{-12}msec^{-2}$ (or $8{\pi}a_0{\approx}1.1{\times}10^{-10}msec^{-2}$). The scheme predicts the asymptotic flattening of galactic rotation curves, the Tully-Fisher/Faber-Jackson relations, the mass discrepancy-acceleration relation of galaxies, the surface brightness-acceleration relation of galaxies, the kinematics of galaxy clusters, and "Renzo's rule" correctly; additional (dark) mass components are not required. Given that it is based on various ad-hoc assumptions and given further limitations, the scheme I present is not yet a consistent theory of gravitation; rather, it is a "toy model" providing a convenient scaling law that simplifies the description of gravity on galactic scales.
Keywords
Gravitation; Galaxies: kinematics and dynamics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Binney, J., & Tremaine, S. 2008, Galactic Dynamics, 2nd edn. (Princeton: Princeton University Press)
2 Bondi, H., & Samuel, J. 1997, The Lense-Thirring Effect and Mach's Principle, Phys. Letters A, 228, 121   DOI   ScienceOn
3 Cardone, V. F., Radicella, N., & Parisi, L. 2012, Constraining Massive Gravity with Recent Cosmological Data, Phys. Mod. Rev. D, 85, 124005   DOI
4 Dubinski, J., Mihos, J. C., & Hernquist, L. 1999, Constraining Dark Halo Potentials with Tidal Tails, ApJ, 526, 607   DOI
5 Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. 1999, The Cosmic Triangle: Revisiting the State of the Universe, Science, 284, 1481   DOI   ScienceOn
6 Barrena, R., Biviano, A., Ramella, M., Falco, E. E., & Seitz, S. 2002, The Dynamical Status of the Cluster of Galaxies 1E0657-56, A&A, 386, 816   DOI   ScienceOn
7 Faber, S. M., & Jackson, R. E. 1976, Velocity Dispersions and Mass-to-Light Ratios for Elliptical Galaxies, ApJ, 204, 668   DOI
8 Famaey, B., & McGaugh, S. S. 2012, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Relativity, 15, 10   DOI
9 Gavazzi, R., Treu, T., Rhodes, J. D., et al. 2007, The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii, ApJ, 667, 176   DOI
10 Goldhaber, A. S., & Nieto, M. M. 2010, Photon and Graviton Mass Limits, Rev. Mod. Phys., 82, 939   DOI   ScienceOn
11 Griffith, D. 2008, Introduction to Elementary Particles (Weinheim: Wiley-VCH)
12 Hernandez, X., & Lee, W. H. 2008, The Tightening of Wide Binaries in dSph Galaxies through Dynamical Friction as a Test of the Dark Matter Hypothesis, MNRAS, 387, 1727   DOI   ScienceOn
13 Hinterbichler, K. 2012, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671   DOI
14 Jee, M. J., Mahdavi, A., Hoekstra, H., et al. 2012, A Study of the Dark Core in A520 with the Hubble Space Telescope: The Mystery Deepens, ApJ, 747, 96   DOI
15 Kim, J.-H., Park, C., Rossi, G., Lee, S. M., & Gott, J. R. III. 2011, The New Horizon Run Cosmological N-Body Simulations, JKAS, 44, 217
16 Kroupa, P. 2012, The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology, PASA, 29, 395   DOI
17 McGaugh, S. S. 2004, The Mass Discrepancy-Acceleration Relation: Disk Mass and the Dark Matter Distribution, ApJ, 609, 652   DOI
18 Lang, K. R. 2006, Astrophysical Formulae. Vol. I, 3rd edn. (Berlin: Springer)
19 Lee, J., & Komatsu, E. 2010, Bullet Cluster: a Challenge to ACDM Cosmology, ApJ, 718, 60   DOI
20 Markevitch, M., Govoni, F., Brunetti, G., & Jerius, D. 2005, Bow Shock and Radio Halo in the Merging Cluster A520, ApJ, 627, 733   DOI
21 Milgrom, M. 1983, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, ApJ, 270, 365   DOI
22 Ostriker, J. P., & Peebles, P. J. E. 1973, A Numerical Study of the Stability of Flattened Galaxies: Or, Can Cold Galaxies Survive?, ApJ, 186, 467   DOI
23 Rubin, U. C., Ford, W. K. Jr., & Thonnard, N. 1980, Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii, from NGC4605 (R = 4 kpc) to UGC2885 (R = 122 kpc), ApJ, 238, 471   DOI
24 Sancisi, R. 2004, The Visible Matter - Dark Matter Coupling, in: Ryder, S. D., et al. (eds.), Dark Matter in Galaxies, IAU Symposium, 220, 233
25 Sparke, L. S., & Gallagher, J. S. III. 2007, Galaxies in the Universe, 2nd edn. (Cambridge: Cambridge University Press)
26 Tully, R. B., & Fisher, J. R. 1977, A New Method of Determining Distances to Galaxies, A&A, 54, 661
27 Zwicky, F. 1933, Die Rotverschiebung von Extragalaktischen Nebeln, Helvet. Phys. Acta, 6, 110