Twenty small-scale farms of two villages (A and B) were surveyed to identify the feeding traits, milk productivity and nutritional status of lactating cattle and buffalo in Terai, Nepal. Constituents and dry matter (DM) of feed supplied, body condition score (BCS), heart girth (HG), bodyweight (BW), milk yield (MY) and plasma metabolites were obtained in the pasture-sufficient, pasture-decreasing and fodder-shortage periods. Milk yield of 305-day lactation was estimated by the daily MY. The supplies of rice straw and native grass were lower and higher in the pasture-sufficient period than in the other periods, respectively (5.5 kg/day vs. 9.8 kg/day and 3.2 kg/day vs. 0.4 kg/day, respectively, p<0.01). The roughage-supplement rates of the animals were higher in village A than in village B (5.0 vs. 2.2 in cattle and 9.3 vs. 1.8 in buffalo, p<0.01). The variance of feed constituents among the periods and between the villages induced different supplies of CP, NDF and TDN. The concentrations of CP and TDN in the cattle feed were higher in the pasture-sufficient period than in the other periods (9.1% vs. 7.3% and 57.4% vs. 51.0%, respectively, p<0.01). The supplies of CP for cattle and buffalo, and of TDN for buffalo were lower in village A than in village B (7.5% vs. 8.7% and 6.6% vs. 9.1% [p<0.01], and 53.1% vs. 56.2% [p<0.05], respectively). The BCS, HG and BW of the animals were lower in village A than in village B (2.51 vs. 2.86, 156 cm vs. 170 cm and 300 kg vs. 318 kg, respectively in cattle, 2.83 vs. 4.00, 186 cm vs. 216 cm and 429 kg vs. 531 kg, respectively in buffalo, p<0.01). The cattle yielded more milk in the pasture-sufficient period than in the other periods (7.9 liters/day vs. 6.6 liters/day, p<0.01). The 305-day MY of cattle that calved in the fodder-shortage period was lower than that of cattle that calved in the other periods (1,900 liters vs. 2,251 liters, p<0.01). The MYs of cattle and buffalo were lower in village A than in village B (6.2 liters/day vs. 8.1 liters/day and 3.7 liters/day vs. 7.7 liters/day, respectively, p<0.01). The 305-day MY of cattle was lower in village A than in village B (1,935 liters vs. 2,409 liters, p<0.01). The concentrations of plasma albumin and urea nitrogen in cattle were lower in village A than in village B (3.2 g/dl vs. 3.4 g/dl [p<0.01] and 7.4 mg/dl vs. 10.2 mg/dl [p<0.05], respectively). The different supplies of CP, NDF and TDN among the periods and between the villages might have affected MY and nutritional status in cattle and buffalo. It was likely that the lower supplies of CP and TDN for cattle that calved in the fodder-shortage period and in village A lowered the 305-day MY of cattle.