• Title/Summary/Keyword: slag-replaced concrete

Search Result 94, Processing Time 0.014 seconds

Evaluation on the Durability of Concrete Replaced to Blast Furnace Slag (고로슬래그 미분말을 치환한 콘크리트의 내구특성 평가)

  • Lee, Se-Bum;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Choe, Gyeong-Cheol;Koo, Kyung-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.249-251
    • /
    • 2012
  • Concrete based on blast-furnace slag has a problem that its deterioration occurs process and quality of concrete are difficult to control. Therefore, it is judged that organized and comprehensive R&D will be continuously performed. In this study, the durability of concrete replaced with blast-furnace slag was evaluated for a solution. Experimental results, Concrete based on blast-furnace slag improved the durability.

  • PDF

The Stress-Strain Relationship and Compressive Strength of Concrete Containing Hwangtoh and Slag (황토와 슬래그를 첨가한 콘크리트의 강도 및 응력-변형률 관계)

  • Kang, Hong-Ki;Yang, Keun-Hyeok;Lee, Young-Ho;Hwang, Hey-Zoo;Chung, Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.672-675
    • /
    • 2004
  • The objective of this study was to understand the effect of hwangtoh and slag on various properties of concrete. Main variables were replacement level of admixtures, hwangtoh and slag, and curing temperature. Test results indicated that the compressive strength of concrete replaced by either hwangtoh and slag was significantly influenced by curing temperature. The elasticity modulus and compressive peak strain of concrete showed a small increase with increasing hwangtoh replacement.

  • PDF

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

The relation Between Carbonation and Rebar Corrosion of Concrete Containing Ground Granulated Blast Furnace Slag (고로슬래그 미분말 혼입 콘크리트의 탄산화 및 철근부식의 관계)

  • 송형수;김형래;윤상천;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1193-1198
    • /
    • 2001
  • The glass of Ground Granulated Blast Furnace Slag(GGBFS) was released by the hydroxyl ions during the hydration of the Portland cement. That results in relatively less $Ca(OH)_{2}$ in the concrete replaced with GGBFS than in ordinary portland cement concrete(OPCC). As the quantity of $Ca(OH)_{2}$ is decreased, the rate of carbonation in the concrete replaced GGBFS is faster than OPCC. Therefore, it has been misunderstood that the concrete replaced GGBFS has negative effect on the corrosion of steel by carbonation. Therefore, this study aimed at the relation between carbonation and rebar corrsion in the concrete with GGBFS, measuring air.water permeability, half cell, and corrosion rate by the depth of carbonation.

  • PDF

The properties of mortar using ground granulated blast-furnace slag (고로슬래그 미분말을 사용한 모르타르의 물성)

  • 김태형;김종인;최영화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.105-110
    • /
    • 1998
  • The propose of this study is to examine the mechanical properties of mortar using ground granulated blast-furnace(GGBF) slag. In this study, the mortar replaced by varying fineness and content of GGBF slag is investigated through the change of compressive strength, chemical resistance and weight loss. As the result, it has been found that GGBF slag increase somewhat higher flow value and compressive strength. In addition, the chemical resistance of motar using GGBF slag shows higher flow that of motar not containing GGBF slag.

  • PDF

A Study on the Fundamental Properties of Mortar Using Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 모르터의 기초물성에 대한 연구)

  • 문한영;최연왕;류재석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • The purpose of this study is to examine ground granulated blast furnace(GGBF) slag produced in the country for concrete additive through physical and chemical alalysis. In this study, mortar using ordinary portland cement a part of which was replaced with GGBF slag is investigated through fundamental experiment. As the result , it was found that GGBF slag increased to some extent flow value and strength of mortar.

  • PDF

Strength Evaluation of Concrete Containing Ferronickel Slag Aggregate (페로니켈 슬래그 잔골재가 혼입된 콘크리트의 강도 평가)

  • Choi, Min Guen;Son, Jin-Su;Cho, Bong suk;Lee, Jin-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • For sustainable development in the construction industry, blast furnace slag has been used as a substitute for cement in concrete. In contrast, ferronickel slag, which is the by-product generated during smelting to ferronickel used in the manufacturing of stainless steel and nickel alloys, has a limitation to use as a binder and an aggregate due to its expansive characteristics. Recently, stabilization technology of ferronickel slag has been improved and studies have been carried out to utilize ferronicke slag as fine aggregate in concrete. Therefore, in this study, basic mechanical properties of concrete used in ferronickel slag aggregate was evaluated. The compressive strength (24, 30, 40 MPa) and replacement rate of ferronickel slag aggregate (0, 10, 25, 50%) were considered as experimental variables. As a result of test, concrete replaced fine aggregate with 25% ferronickel slag aggregate showed superior performance in the compressive strength and flexural strength.

Microstructure of High Volume Slag Concrete using Recycled Aggregates (순환골재를 사용한 고로슬래그 다량치환 저강도 무시멘트 콘크리트의 미시적 분석)

  • Kwak, Yong-Jin;Park, Jae-Yong;Kim, Kyoung-Hoon;Lee, Hyang-Jae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.30-31
    • /
    • 2013
  • In this study, characteristics of the concrete replaced in large amount with blast furnace slag is analyzed by the microscopic analyses in the process of the mock-up testing to apply to the actual practice in the area of the general strength by activating a small amount of cement(25%) replaced in large amount of finely powered blast furnace slag.

  • PDF

Chloride Ion Penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure (해양환경 폭로에 의한 슬래그 치환 콘크리트 및 슬래그 콘크리트의 염화물 이온 침투 저항성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Gyeong-Tae;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.299-306
    • /
    • 2017
  • In this research, it was examined chloride ion penetration resistance of slag-replaced concrete and cementless slag concrete considering marine environmental exposure conditions of splash zone, tidal zone and immersion zone. In the design strength of grade 24 MPa, the specimens were tested to determine their compressive strength, scanning electron microscopy images and chloride migration coefficient. Further, chloride ion penetration depth and carbonation depth of specimens exposed to marine environment were measured. Experimental results confirm that chloride migration coefficient of specimens tended to decrease with increasing the replacement ratio of ground granulated blast-furnace slag in accelerated laboratory test. In addition, the specimens exposed to the tidal zone were found to be the greatest chloride ion penetration depth compared to splash zone and immersion zone. On the other hand, the chloride ion penetration depth of the specimens exposed to splash zone tended to increase with increasing the replacement ratio of ground granulated blast-furnace slag in contrast with the results for the tidal zone and immersion zone.

Strength and durability of ultra fine slag based high strength concrete

  • Sharmila, Pichaiya;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.675-686
    • /
    • 2015
  • The use of ground granulated blast furnace slag (GGBFS) from steel industries waste is showing perspective application in civil engineering as partial substitute to cement. Use of such waste conserves natural resources and minimizes the space required for landfill. The GGBFS used in the present work is of ultra fine size and hence serves as micro filler. In this paper strength and durability characteristics of ultra fine slag based high strength concrete (HSC) (with a characteristic compressive strength of 50 MPa) were studied. Cement was replaced with ultra fine slag in different percentages of 5, 10, and 15% to study the compressive strength, porosity, resistances against sulfate attack, sorptivity and chloride ion penetration. The experiments to study compressive strength were conducted for different ages of concrete such as 7, 28, 56, and 90 days. From the detailed investigations with 16 mix combinations, 10% ultra fine slag give better results in terms of strength and durability characteristics.