DOI QR코드

DOI QR Code

Chloride Ion Penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure

해양환경 폭로에 의한 슬래그 치환 콘크리트 및 슬래그 콘크리트의 염화물 이온 침투 저항성

  • Lee, Bo-Kyeong (Department of Architectural Engineering, Chungnam National University) ;
  • Kim, Gyu-Yong (Department of Architectural Engineering, Chungnam National University) ;
  • Kim, Gyeong-Tae (Department of Architectural Engineering, Chungnam National University) ;
  • Shin, Kyoung-Su (Department of Architectural Engineering, Chungnam National University) ;
  • Nam, Jeong-Soo (Department of Architectural Engineering, Chungnam National University)
  • Received : 2017.02.10
  • Accepted : 2017.04.17
  • Published : 2017.06.30

Abstract

In this research, it was examined chloride ion penetration resistance of slag-replaced concrete and cementless slag concrete considering marine environmental exposure conditions of splash zone, tidal zone and immersion zone. In the design strength of grade 24 MPa, the specimens were tested to determine their compressive strength, scanning electron microscopy images and chloride migration coefficient. Further, chloride ion penetration depth and carbonation depth of specimens exposed to marine environment were measured. Experimental results confirm that chloride migration coefficient of specimens tended to decrease with increasing the replacement ratio of ground granulated blast-furnace slag in accelerated laboratory test. In addition, the specimens exposed to the tidal zone were found to be the greatest chloride ion penetration depth compared to splash zone and immersion zone. On the other hand, the chloride ion penetration depth of the specimens exposed to splash zone tended to increase with increasing the replacement ratio of ground granulated blast-furnace slag in contrast with the results for the tidal zone and immersion zone.

본 연구에서는 비말대, 간만대, 침지대의 해양환경 폭로에 의한 슬래그 치환 콘크리트와 슬래그 콘크리트의 염화물 이온 침투 저항성을 검토하였다. 설계기준강도 24 MPa의 슬래그 치환 콘크리트의 슬래그 콘크리트를 제조하여, 압축강도, 주사전자현미경에 의한 미세구조의 관찰, 실내 촉진실험을 통한 비정상상태의 염화물 이동계수, 해양환경 폭로 조건에 따른 염화물 이온 침투 깊이, 탄산화 깊이를 평가하였다. 실험결과, 실내 촉진실험과는 다르게 간만대, 침지대에 폭로한 시험체의 염화물 이온 침투 깊이가 단계적으로 감소되는 것을 확인하였다. 또한, 간만대에 폭로한 시험체가 조수간만에 의한 해수의 건습작용에 의해 염화물 이온 침투 깊이가 가장 큰 것으로 나타났다. 한편, 비말대에서는 간만대와 침지대와는 다르게 고로슬래그 미분말의 치환율이 증가할수록 염화물 이온 침투 깊이가 증가하는 경향을 보였다.

Keywords

References

  1. Kouloumbi, N., Batis, G., and Malami, Ch., "The Anticorrosive Effect of Fly Ash, Slag and a Greek Pozzolan in Reinforced Concrete", Cement and Concrete Composites, Vol. 16, No. 4, 1994, pp. 253-260. https://doi.org/10.1016/0958-9465(94)90037-X
  2. Dhir, R. K., Jones, M. R., and McCarthy, M. J., "PFA Concrete: Chloride-induced Reinforcement Corrosion", Magazine of Concrete Research, Vol. 46, No. 169, 1994, pp. 269-277. https://doi.org/10.1680/macr.1994.46.169.269
  3. Glass, G. K., Hassanein, N. M., and Buenfeld, N. R., "Neural Network Modelling of Chloride Binding", Magazine of Concrete Research, Vol. 49, No. 181, 1997, pp. 323-335. https://doi.org/10.1680/macr.1997.49.181.323
  4. Geiseler, J., Kollo, H., and Lang, E., "Influence of Blast Furnace Cements on Durability of Concrete Structures", ACI Materials Journal, Vol. 92, No. 3, 1995, pp. 252-257.
  5. Ishida, T., Miyahara, S., and Maruya, T., "Chloride Binding Capacity of Mortars Made with Various Portland Cement and Mineral Admixture", Journal of Advanced Concrete Technology, Vol. 6, No. 2, 2008, pp. 287-301. https://doi.org/10.3151/jact.6.287
  6. Kuo, W. T., Wang, H. Y., and Shu, C. Y., "Engineering Properties of Cementless Concrete Produced from GGBFS and Recycled Desulfurization Slag", Construction and Building Materials, Vol. 63, 2014, pp. 189-196. https://doi.org/10.1016/j.conbuildmat.2014.04.017
  7. Kuo, W. T., & Hou, T. C., "Engineering Properties of Alkali-activated Binders by Use of Desulfurization Slag and GGBFS", Construction and Building Materials, Vol. 66, 2014, pp. 229-234. https://doi.org/10.1016/j.conbuildmat.2014.05.056
  8. Lee, B., Kim, G., Nam, J., Cho, B., Hama, Y., and Kim, R., "Compressive Strength, Resistance to Chloride-ion Penetration and Freezing/thawing of Slag-replaced Concrete and Cementless Slag Concrete Containing Desulfurization Slag Activator", Construction and Building Materials, Vol. 128, 2016, pp. 341-348. https://doi.org/10.1016/j.conbuildmat.2016.10.075
  9. Lee, B. K., Kim, G. Y., Koo, K. M., and Shin, K. S., "Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator", Journal of the Korea Institute of Building Construction, Vol. 14, No. 1, 2014, pp. 37-44. https://doi.org/10.5345/JKIBC.2014.14.1.037
  10. Kim, R. H., Kim, G. Y., Lee, B. K., Shin, K. S., and Song, G. Y., "Effects of Micropores on the Freezing-Thawing Resistance of High Volume Slag Concrete", Journal of the Korea institute for structural maintenance and inspection, Vol. 19, No. 4, 2015, pp. 67-74. https://doi.org/10.11112/jksmi.2015.19.4.067
  11. Jo, Y. J., Choi, B. W., Choi, J. S., and Jung, Y. W., "A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment", Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 9, 2013, pp. 4542-4551. https://doi.org/10.5762/KAIS.2013.14.9.4542
  12. Arya, C., and Xu, Y., "Effect of Cement Type on Chloride Binding and Corrosion of Steel in Concrete", Cement and Concrete Research, Vol. 25, No. 4, 1995, pp. 893-902. https://doi.org/10.1016/0008-8846(95)00080-V
  13. Arya, C., and Newman. J. B., "An Assessment of Four Methods of Determining the Free Chloride Content of Concrete", Materials and Structures, Vol. 23, No. 4, 1990, pp. 319-330. https://doi.org/10.1007/BF02472710
  14. Dhir, R. K., El-Mohr, M. A. K., and Dyer, T. D., "Chloride Binding in GGBS Concrete", Cement and Concrete Research, Vol. 26, No. 12, 1996, pp. 1767-1773. https://doi.org/10.1016/S0008-8846(96)00180-9
  15. Maruya, T., Tangtermsirikul, S., and Matsuoka, Y., "Modeling of Movement of Chloride Ions in Concrete Surface Layer", Journal of Materials, Concrete Structures and Pavement, Vol. 38, No. 585, 1998, pp. 79-95.
  16. Song, H. W., Kwon, S. J., Lee, S. W., and Byun, K. J., "A Study on Resistance of Chloride Ion Penetration in Ground Granulated Blast-Furnace Slag Concrete", Journal of the Korea Concrete Institute, Vol. 15, No. 3, 2003, pp. 400-408. https://doi.org/10.4334/JKCI.2003.15.3.400
  17. Maruya, T., Matsuoka, Y., and Tangtermsirikul, S., "Modeling of Chloride Ion Movement at the Surface Layer of Hardened Concrete", Proceedings-Japan Society of Civil Engineers, Doboku Gakkai Ronbunshu, Vol. 1998, No. 585, 1998, pp. 79-95.
  18. Suryavanshi, A. K., and Swamy, R. N., "Stability of Friedel's Salt in Carbonated Concrete Structural Elements", Cement and Concrete Research, Vol. 26, No. 5, 1996, pp. 729-741. https://doi.org/10.1016/S0008-8846(96)85010-1
  19. Oh, B. H., Lee, S. K., Lee, M. K., and Jung, S. H., "Influence of Carbanation on the Chloride Diffusion in Concrete", Journal of the Korea Concrete Institute, Vol. 15, No. 6, 2003, pp. 829-839. https://doi.org/10.4334/JKCI.2003.15.6.829