• 제목/요약/키워드: slab-column connection

검색결과 108건 처리시간 0.024초

콘크리트채움 U형 강재보-강재기둥 합성 내진접합부에 대한 주기하중 실험 (Cyclic Seismic Testing of Concrete-filled U-shaped Steel Beam-to-Steel Column Connections)

  • 박홍근;이철호;박창희;황현종;이창남;김형섭;김성배
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.337-347
    • /
    • 2011
  • 본 논문에서는 콘크리트 채움 U형 강재보와 강재 H단면 기둥으로 구성된 접합부의 내진 성능을 평가하였다. 접합부 내진성능을 평가하기 위하여 세 개의 보-기둥 접합부 실험체를 반복주기하중에 대하여 실험하였다. 합성보는 콘크리트 슬래브와 스터드를 이용하여 일체화 되었으며, 슬래브에는 부모멘트를 위한 철근이 배치되었다. 접합부 상세를 실험 변수로 하였으며, 보 접합부의 강화방안 및 약화방안, 합성효과의 정도를 고려하였다. 합성보의 춤은 슬래브 두께를 포함하여 600mm이며, 강재보와 슬래브의 철근은 H형강 기둥과 용접을 통해 접합하였다. 접합부 강화방안은 합성보 플랜지에 덧댐플레이트를 용접하였으며, 약화방안으로서 소성힌지 발생지점에 채움콘크리트 안에 스티로폼을 삽입하였다. 실험 결과 완전합성 실험체는 강도와 변형능력, 에너지 소산에 있어서 우수한 성능을 보여주었다. 변형능력은 특수모멘트골조 기준인 4% 이상의 회전각을 발휘하였다.

플랫 플레이트 내부 접합부의 강도산정모델 (Strength Prediction Model for Flat Plate-Column Connections)

  • 최경규;박홍근;안귀용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.897-902
    • /
    • 2002
  • The failure of flat plate connection is successive failure process accompanying with stress redistribution, hence it is necessary to compute the contributions of each resistance components at ultimate state. In the present study, the interactions of resultant forces at each faces of connection, i.e. shear, bending moment and torsional moment are considered in the assessment of strength of slab. As a result the strength prediction model for connection is made up as combination of bending resistance, shear resistance and torsional resistance. The proposed method is verified by the experimental data and numerical data of continuous slabs.

  • PDF

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • 제31권1호
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

CFT 기둥 - RC 무량판 슬래브 접합부의 횡저항 성능 (Lateral Resisting Capacity for CFT Column to RC Flat Plate Slab Connections)

  • 송진규;송호범;오상원;이철호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.65-68
    • /
    • 2008
  • RC 무량판 구조시스템은 여러 구조적 장점들로 인해 그 사용이 증가하는 추세이지만 횡방향 변위성능, 변형성능에 대한 약점을 지니고 있고, 고층화에 따라 기둥 크기가 증가하는 단점을 가지고 있다. 이러한 구조적 단점들은 CFT기둥의 사용을 통해 어느 정도 보완될 수 있으나 현재 CFT 기둥과 RC 무량판 접합부의 상세 및 설계법은 명확하게 제시된 바가 없다. 따라서 본 논문은 실물대 실험을 통해 일반 RC 기둥-무량판 접합부와 비교하여 CFT 기둥-RC 무량판 접합부의 횡저항 성능을 검증하고, 횡하중-변위비 성능에 따른 접합부의 모멘트 성능과 연성 능력을 파악하였다. 각기 다른 변수를 지닌 4개의 실험체를 제작하여 횡력 실험을 수행한 결과 다음과 같은 결론을 도출하였다. CFT 실험체는 전단머리의 영향으로 위험단면이 확장되었으며 일반 RC 기둥 실험체에 비해 초기강성은 35%, 모멘트는 25${\sim}$35% 증가하였고, 모멘트의 증가로 인한 에너지 흡수율이 증가하였다. 모든 실험체는 슬래브의 전단거동이 지배하였지만 내진밴드로 보강된 CFT 실험체는 슬래브의 휨거동 영역이 확장되었고, 연성비와 에너지 흡수율 또한 증가하였다.

  • PDF

Numerical investigation on punching shear of RC slabs exposed to fire

  • Sadaghian, Hamed;Farzam, Masood
    • Computers and Concrete
    • /
    • 제23권3호
    • /
    • pp.217-233
    • /
    • 2019
  • This paper describes the numerical modelling of an interior slab-column connection to investigate the punching shear resistance of reinforced concrete (RC) slabs under fire conditions. Parameters of the study were the fire direction, flexural reinforcement ratio, load levels, shear reinforcement and compressive strength of concrete. Moreover, the efficiency of the insulating material, gypsum, in reducing the heat transferred to the slab was assessed. Validation studies were conducted comparing the simulation results to experiments from the literature and common codes of practice. Temperature dependencies of both concrete and reinforcing steel bars were considered in thermo-mechanical analyses. Results showed that there is a slight difference in temperature endurance of various models with respect to concrete with different compressive strengths. It was also concluded that compared to a slab without gypsum, 10-mm and 20-mm thick gypsum reduce the maximum heat transferred to the slab by 45.8% and 70%, respectively. Finally, it was observed that increasing the flexural reinforcement ratio changes the failure mode from flexural punching to brittle punching in most cases.

친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구 (Environmental Friendly Connection of Composite Beams and Columns)

  • 홍원기;김진민;박선치;임선재
    • KIEAE Journal
    • /
    • 제7권6호
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

PC부재의 접합부 거푸집의 개선방안 연구 -공동주택을 중심으로- (Improvement Plan for Connecting Form of PC Member -Focused on Apartment Buildings-)

  • 김선형;최재휘;김선국;이동훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.9-12
    • /
    • 2010
  • Conventional apartment building projects have favored wall slab structure for the ease of construction and economic viability. However, wall slab structure, consisting of bearing walls, makes remodeling a difficult challenge. In addition, as the amendment to the Building Act in November, 2005 incentivized easy-to-remodel Rahmen structure design for apartment building in terms of floor area ratio and the number of stories, were are seeing more use of PC construct method in apartment building projects gradually. However, PC construction method requires complex connections between beams and columns, making it difficult to install and remove formwork. Furthermore, it is not possible to reuse forms after removal, generating lots of construction wastes, and it is necessary to install new forms again when the size of connection changes in line with modification of column cross-section. Researchers in Korea and elsewhere in the world have focused on structural performance of connection in PC construction method, with little attention to alternative approaches to improving connection forms for PC construction method. Accordingly, this research aims to study an approach to improving connection forms for PC construction method.

  • PDF

DEVELOPMENT OF CONCRETE FILLED TUBE AS A PILLAR PILE FOR TOP DOWN METHOD

  • Jee-Yun Song;Hong-Chul Rhim;Seung-Weon Kim
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.808-813
    • /
    • 2009
  • Top-down method is widely used for urban area construction for its advantages in reducing environmental problems such as dust and noise, and saving construction cost depending on given conditions of a construction site. Because the excavation and construction of super- and sub-structures of the building have to be proceeded simultaneously, a column has to be embedded prior to excavation. This column is called a pillar column or pre-founded column. Usually a wide flange section is used for these columns. To place the columns, usually the diameter of casing holes needs to be larger than the section of the wide flange itself in order to accommodate a couple of tremie pipes for pouring concrete. In this paper, a newly developed method of using circular pipe as an alternative to the existing wide flange section is discussed. The crucial part of the new method is to develop a connection between the circular column and concrete flat slabs. For shear force transfer from concrete slab to the concrete filled tube (CFT) column, shear jackets with studs and shear bands are proposed. The studs are welded on the jackets at shop and placed around the circular column on site. The shear bands are welded on the outer side of the CFT at shop and inserted into ground with the CFT. Test results and application of the method to a construction site are also provided in this paper.

  • PDF