Aiming Graph convolutional networks (GCNs) have achieved outstanding performances on skeleton-based action recognition. However, several problems remain in existing GCN-based methods, and the problem of low recognition rate caused by single input data information has not been effectively solved. In this article, we propose a Dual-stream fusion method that combines video data and skeleton data. The two networks respectively identify skeleton data and video data and fuse the probabilities of the two outputs to achieve the effect of information fusion. Experiments on two large dataset, Kinetics and NTU-RGBC+D Human Action Dataset, illustrate that our proposed method achieves state-of-the-art. Compared with the traditional method, the recognition accuracy is improved better.
International Journal of Internet, Broadcasting and Communication
/
제16권1호
/
pp.47-54
/
2024
With the rapid development of 3D animation, MetaHuman is widely used in film production, game development and VR production as a virtual human creation platform.In the animation production of virtual humans, motion capture is usually used.Since different motion capture solutions use different skeletons for motion recording, when the skeleton level of recorded animation data is different from that of MetaHuman, the animation data recorded by motion capture cannot be directly used on MetaHuman. This requires Reorient the skeletons of both.This study explores an efficient skeleton reorientation method that can maintain the accuracy of animation data by reducing the number of bone chains.In the experiment, three skeleton structures, Rokoko, Mixamo and Xsens were used for efficient redirection experiments, to compare and analyze the adaptability of different skeleton structures to the MetaHuman skeleton, and to explore which skeleton structure has the highest compatibility with the MetaHuman skeleton.This research provides an efficient skeleton reorientation idea for the production team of 3D animated video content, which can significantly reduce time costs and improve work efficiency.
Park, Jun-Young;Kyota, Fumihito;Saito, Suguru;Nakajima, Masayuki
한국방송∙미디어공학회:학술대회논문집
/
한국방송공학회 2009년도 IWAIT
/
pp.764-767
/
2009
Motion capture systems allow to measure the precise position of markers on the human body in real time. These captured motion data, the marker position data, have to be fitted by a human skeleton model to represent the motion of the human. Typical human skeleton models approximate the joints using a ball joint model. However, because this model cannot represent the human skeleton precisely, errors between the motion data and the movements of the simplified human skeleton model happen. We propose in this paper a method for measuring a translation component of wrist, and elbow joints on upper limb using optical motion capture system. Then we study the errors between the ball joint model and acquired motion data. In addition, we discuss the problem to estimate motion of human joint using optical motion capture system.
Chuluunsaikhan, Tserenpurev;Kim, Jeong-Hun;Choi, Jong-Hyeok;Nasridinov, Aziz
한국정보처리학회:학술대회논문집
/
한국정보처리학회 2021년도 추계학술발표대회
/
pp.474-475
/
2021
The accuracy of real-time video analysis system based on 3D skeleton data highly depends on the quality of data. This study proposes a methodology to distinguish noise in 3D skeleton frames using Intersection Over Union (IOU) method. IOU is metric that tells how similar two rectangles (i.e., boxes). Simply, the method decides a frame as noise or not by comparing the frame with a set of valid frames. Our proposed method distinguished noise in 3D skeleton frames with the accuracy of 99%. According to the result, our proposed method can be used to track noise in 3D skeleton frames.
본 연구는 3D레이저 스캔 방식으로 계측된 인체 데이터를 대상으로 하여 인체의 여러 동작들에 대한 애니메이션 모듈 구현을 목표로 하였다. 이를 위하여 애니메이션 회전을 위한 기준점인 인체의 골격 기준점을 추출하고 추출된 기준점을 이용하여 골격을 잡고 각 골격에 따른 계층트리를 구성하였다. 구성된 계층트리의 골격에 해당되는 오브젝트 정점들을 골격과 연결하고 주어진 애니메이션 3차원 정점들에 행동 패턴을 적용하여 스캔데이터에 애니메이션을 구현하였다.
Communications for Statistical Applications and Methods
/
제30권6호
/
pp.551-560
/
2023
Recently, there has been significant research into the recognition of human activities using three-dimensional sequential skeleton data captured by the Kinect depth sensor. Many of these studies employ deep learning models. This study introduces a novel feature selection method for this data and analyzes it using machine learning models. Due to the high-dimensional nature of the original Kinect data, effective feature extraction methods are required to address the classification challenge. In this research, we propose using the first four moments as predictors to represent the distribution of joint sequences and evaluate their effectiveness using two datasets: The exergame dataset, consisting of three activities, and the MSR daily activity dataset, composed of ten activities. The results show that the accuracy of our approach outperforms existing methods on average across different classifiers.
Rao, D. Surendra;Potturu, Sudharsana Rao;Bhagyaraju, V
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.97-108
/
2022
The video-assisted human action recognition [1] field is one of the most active ones in computer vision research. Since the depth data [2] obtained by Kinect cameras has more benefits than traditional RGB data, research on human action detection has recently increased because of the Kinect camera. We conducted a systematic study of strategies for recognizing human activity based on deep data in this article. All methods are grouped into deep map tactics and skeleton tactics. A comparison of some of the more traditional strategies is also covered. We then examined the specifics of different depth behavior databases and provided a straightforward distinction between them. We address the advantages and disadvantages of depth and skeleton-based techniques in this discussion.
Experimental investigations on the seismic behaviors of the PVC-FRP Confined Reinforced Concrete (PFCRC) columns under low cyclic loading are carried out and two variable parameters including CFRP strips spacing and axial compression ratio are considered. The PFCRC column finally fails by bending and is characterized by the crushing of concrete and yielding of the longitudinal reinforcement, and the column with a high axial compression ratio is also accompanied by the cracking of the PVC tube and the fracture of CFRP strips. The hysteretic curves and skeleton curves of the columns are obtained from the experimental data. With the increase of axial compression ratio, the stiffness degradation rate accelerates and the ductility decreases. With the decrease of CFRP strips spacing, the unloading sections of the skeleton curves become steep and the ductility reduces significantly. On the basis of fiber model method, a numerical analysis approach for predicting the skeleton curves of the PFCRC columns is developed. Additionally, a simplified skeleton curve including the elastic stage, strengthening stage and unloading stage is suggested depending on the geometric drawing method. Moreover, the loading and unloading rules of the PFCRC columns are revealed by analyzing the features of the skeleton curves. The quantitative expressions that are used to predict the unloading stiffness of the specimens in each stage are proposed. Eventually, an analytical model for the PFCRC columns under low cyclic loading is established and it agrees well with test data.
학습 데이터를 구성하는 각각의 문자들에 대해 서로 다른 글자체들을 픽셀 단위로 더해서 MASK를 만들고, 해당 MASK에 속하는 픽셀값들을 세 영역으로 나눈다. 실험 데이터를 골격 형태로 수정하고, 지역 경계 연산을 사용하여 수정된 실험 데이터의 배경 중에서 문자의 골격에 인접한 배경 영역을 구분하는 경계를 만든다. 수정된 실험 데이터와 MASK들 간의 불일치 정도를 계산해서 최소값을 가지는 MASK를 찾는다. 이 MASK가 해당 실험 데이터에 대해 최종적으로 인식된 학습 데이터 문자로 선택된다. 문자의 골격과 지역 경계 연산을 사용하는 인식법은 주어진 학습 데이터에 새로운 글자체를 추가해서 학습 데이터를 쉽게 확장할 수 있으며, 구현하기가 간단하면서도 높은 문자 인식률을 얻을 수 있다.
Journal of the Korean Data and Information Science Society
/
제7권1호
/
pp.137-144
/
1996
치과 교정학에서 두개안면골의 성장양상을 파악하는 것은 매우 중요한 부분이다. 본 연구에서는 한국인의 두개안면골의 성장양상에 영향을 가장 많이 주는 안면골 요인들을 조사하여 성장양상을 조기에 예측할 수 있는 방법을 제시하고, 각 요인들의 정상 기준치를 구함으로써, 치과 교정치료의 진단 및 치료계획의 수립, 치료진행과정의 평가, 치료결과의 분석 등에 유용한 정보를 제공하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.