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Abstract
Recently, there has been significant research into the recognition of human activities using three-dimensional

sequential skeleton data captured by the Kinect depth sensor. Many of these studies employ deep learning models.
This study introduces a novel feature selection method for this data and analyzes it using machine learning
models. Due to the high-dimensional nature of the original Kinect data, effective feature extraction methods are
required to address the classification challenge. In this research, we propose using the first four moments as
predictors to represent the distribution of joint sequences and evaluate their effectiveness using two datasets: The
exergame dataset, consisting of three activities, and the MSR daily activity dataset, composed of ten activities.
The results show that the accuracy of our approach outperforms existing methods on average across different
classifiers.
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1. Introduction

Recognizing and classifying human gestures or motions based on three-dimensional skeleton joint
data is computer vision’s most active research issue. 3D skeleton-based motion classification is used
to build an automatic monitoring system for fall detection or abnormal behavior detection in public
places such as hospitals, nursing homes, and large shopping malls (Taha et al., 2015; Shin et al., 2021).
Human motion classification is applied in various fields, such as gait studies (Chaaraoui et al., 2015;
Tao et al., 2012), healthcare services such as personal training (Lin et al., 2018; Jin et al., 2015), and
human-robot interaction in which robots recognize and respond to human actions (Yang et al., 2015;
Du et al., 2012). In addition, there is a study focused on monitoring the daily life of the elderly and
children in smart home systems (Jalal et al., 2012).

Studies on human motion classification have used data based on wearable sensor devices or com-
puter vision technologies to analyze video images. However, with the recent commercialization of
3D depth cameras such as Kinect, research on utilizing 3D skeleton joint data is increasing. Kinect
tracks the human body joints in real-time and provides 3D skeletal information. The Kinect device
includes a regular RGB camera and an infrared projector and camera. It consistently calculates the 3D
coordinates of various body joints in meters 30 times per second. Kinect is more convenient and cost-
effective for collecting 3D skeletal data because no sensors need to be worn, and the computational
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Figure 1: Example of skeleton joint sequence representing ‘stand up’ activity, which is from the MSR daily
activity dataset (Wang et al., 2012).

burden is less compared to regular RGB video image processing. The origin of the Kinect system
(x = 0, y = 0, z = 0) is positioned at the center of the camera, with the x-axis pointing right, the
y-axis pointing upward, and the the z-axis pointing front. The 3D skeleton joint data represents the
coordinates of the joints as observed in T -frames. Throughout this paper, the T -frames for a motion
are referred to as a skeleton joint sequence. Figure 1 shows a sampled portion of this sequence data of
a participant performing ‘stand up’ from the MSR daily activity dataset (Wang et al., 2012).

In analyzing 3D skeleton joint data for motion classification, it is crucial to consider three key
aspects. Firstly, the normalization of the data is an essential step that must be considered. Normaliza-
tion ensures that all data sequences are set to the same reference point, thus improving the accuracy
of the classification process. Failure to normalize the data can lead to the misclassification of mo-
tions and activities, even if they are identical, due to differences in the origin of the data. Secondly,
the high-dimensional nature of the original 3D skeleton joint data can present a challenge regarding
computational burden and performance. Thus, it is necessary to develop and apply functional features
that have reduced dimensions to overcome this issue. For example, Park (2016) proposes using new
properties, such as the angle and distance between joints, as functional features with reduced dimen-
sions. Finally, it is important to consider the appropriate number of frames to determine the sequence
length for motion classification. The number of frames will significantly impact the accuracy and re-
liability of the classification results. Through this paper, we propose more general features that do not
vary according to specific motions or activities for skeleton data and find out how many frames are
appropriate for extracting these features.

The paper is organized as follows. Section 2 describes the normalization of the skeleton joint
data and general features for representing the joint coordinates. Section 3 presents the moment-based
features for classifying 3D skeleton joint data in motion. Section 4 discusses the findings of data
analysis of two skeleton-based datasets. Finally, it concludes with a discussion in Section 5.

2. Related work

2.1. Normalization

In Kinect, the jth 3D skeleton joint of a person at frame t is represented as J j
t = (x j

t , y
j
t , z

j
t ) for

j = 1, 2, . . . , s and t = 1, 2, . . . ,T . This 3D skeleton joint data is observed in three dimensions
with the number of frames (T ) multiplied by the number of joints (s). When we collect this skeleton
joint data for a motion or activity through an experiment, it becomes necessary to normalize the data
due to different body shapes and movement deviations from different subjects. This pre-processing
step is called normalization. Previous studies, such as Cho and Chen (2014), Taha et al. (2015), Lee
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Figure 2: Skeletal joints of the Kinect scans.

et al., (2017), Sandra (2020), deal with this pre-processing. In these studies, normalization processing
is done by moving the origin of Kinect to the 3D skeleton coordinates so that a particular point on the
human body represents the origin (0, 0, 0) in the initial frame. The normalized skeleton joint can be
represented mathematically as

J j
t(norm) =

(
J j

t − JCenter
1

)
, (2.1)

where j = 1, 2, . . . , s and t = 1, 2, . . . ,T . Various points on the human body have been used as the
origin JCenter

1 for normalization. Lee et al. (2017) selected the Spine Base point in Figure 2 as the
reference origin, while Sandra (2020) opted for the Neck point in Figure 2. In contrast, we utilized the
midpoint of the spine, denoted as Spine Med 1 in Figure 2, as the reference origin for normalization.
Figure 3 demonstrates the effect of normalization. The left image in Figure 3 shows the 3D coordinates
of the initial frame in two sequences for the same subject performing ‘cheer up’ and ‘tossing paper’
from the MSR daily activity dataset. Normalization is crucial in ensuring the consistency of the joint
sequences, as it adjusts the starting position of the overall joints. The right image in Figure 3 shows
the normalized data, where the initial skeleton coordinates of the two frames are now similar.

2.2. Features in 3D skeleton joint data

In this section, we will analyze the extraction of features when classifying motions from skeleton
sequences. There are three commonly used features in skeleton data: (1) a sequence of joint coordi-
nates, (2) temporal differences between consecutive frames, and (3) the mean and range of each joint
coordinate. The first feature, joint feature, was used in previous studies such as Patsadu et al. (2012),
Cho et al. (2012), and Du et al. (2015). For example, Cho et al. (2012) classify arm motions, where
the raw joint coordinates are used as predictors. The second feature, motion feature, is the temporal
difference of each joint. It is defined as difference of each joint between two consecutive frames:

M j
t =

(
J j

t+1 − J j
t

)
, j = 1, 2, . . . , s, t = 1, . . . ,T − 1. (2.2)

Many authors such as Zhu et al. (2013), Lee et al. (2017), Li et al. (2018), and Bagate and Shah
(2019) use these motion features to classify various motions. The third feature, summary statistics,
was used by Reddy and Chattopadhyay (2014) to differentiate between various movements, such as
walking and standing up. Since summary statistics for each joint coordinate are calculated across all
the frames, these features reduce the number of predictors compared to joint and motion features. In
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Figure 3: Different activities performing ‘cheer up’ and ‘tossing paper’ from the same subject before normaliza-
tion (left) and after normalization (right) from the MSR daily activity dataset.

addition, determining the number of frames corresponds to determining the sample size appropriate
for describing the distribution. They used summary statistics with mean and range for jth joint defined
as

J̄ j =
(
x̄ j, ȳ j, z̄ j

)
, j = 1, 2, . . . , s,

R
(
J j

)
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z j
t

)
,

and x̄ j = (1/T )
∑T

t=1 x j
t . This feature extraction reduces the computational load, but it is uncertain if

the mean and range statistics are sufficient to represent the information in the frames. The first and
second feature extraction methods have the disadvantage of an increasing number of predictors with
an increasing number of frames. The third feature extraction method is simple, but it is questionable
if the information in the frames is fully represented. Besides these features, using joint angle targeted
by the specific motion or activity (Park, 2016) was proposed, but those features are only general to
apply to some of the classification problems.

3. Extracting new distributional features using moments

This paper proposes a novel feature extraction method for motion classification by identifying and
extracting the distributional properties of three-dimensional skeleton joint coordinates recorded in
T -frames at a rate of 30 frames per second. Instead of utilizing the raw sequence of skeleton joint
coordinates, this approach focuses on the distributional aspects of the skeleton joint information over
the T -frames. Figure 4 illustrates this concept by showing the distributions of the right-hand joint’s x,
y, and z-coordinates over 30 frames for walking, running, and tennis motion from Kim et al. (2022).
This figure demonstrates that the distribution of each coordinate changes based on the motion, even
within one second.

Our findings, as illustrated in Figure 4, reveal that the distribution of each coordinate varies ac-
cording to the type of motion (walking, running, and tennis in Kim et al. (2022) experiment). The
means, ranges, and shapes of the x, y, and z coordinates differ, leading us to propose a set of summary
statistics to describe the distribution of each coordinate. To better characterize a distribution, we can
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Figure 4: Density plots of right-hand joint coordinates from 30 frames for one subject according to walk, run,
and tennis motion. The S and K stand for skewness and Kurtosis, respectively.

use four central moment-based statistics: Mean, variance, skewness, and kurtosis. While these quan-
tities may not determine the form of a distribution, higher-order moments are rarely used to describe
its characteristics. Mean represents the central location, variance the spread, skewness the asymmetry,
and kurtosis the peakedness or shape of the tails. A normal distribution has a skewness of zero, with
positive values indicating a right skew and negative values a left skew. If kurtosis is greater than 3, the
distribution is leptokurtic with a sharp peak and narrow tails, while a kurtosis less than 3 results in a
platykurtic distribution with a flatter peak and wider tails.

The skewness index and kurtosis index are calculated as µ3(µ2)−3/2 and µ4(µ2)−2, respectively,
where µr is the rth central moment of the random variable X, and µ is its mean. Using the recorded T
frames, we estimate the distributional properties (mean, variance, skewness, and kurtosis) from each
coordinate of each joint, providing a comprehensive description of the motion.

4. Evaluation

This proposed method is evaluated by using two datasets compared with existing method, such as
the linear discriminant analysis (LDA), least absolute shrinkage and selection operator (LASSO),
support vector machine (SVM), random forest (RF), and gradient boosting machine (GBM) methods
for classification with the same settings. The optimal shrinkage parameter in the LASSO classifier
was selected through cross-validation, and the number of trees in the RF model was set to 1K. The
GBM method was trained with a shrinkage parameter of 0.1 and 1K trees. For the SVM training, the
cost value was set to 1, and a gaussian RBF kernel was used. Except for the LDA model, the other four
models inherently perform feature selection or regularization, which is useful for high-dimensional
data such as skeleton joint data.

When evaluating the models, it is important to consider that some correlations may exist between
the sequences when multiple motion sequences are extracted from one person. Therefore, when di-
viding the samples for cross-validation, sequences extracted from the same subject are placed in the
same subset, resulting in a fold equal to the number of subjects.



556 Woohyun Kim, Daeun Kim, Kyoung Shin Park, Sungim Lee

Table 1: Accuracy (%) comparison in exercise game classification using different features (Joint F, Joint F &
Motion F, mean & range, rive number summary, and our proposed four moments) and classifiers (LDA, LASSO,
SVM, RF, and GBM) with 30 frames

Features p Classifiers
LDA LASSO SVM RF GBM Avg.

Joint F 2250 85.7 89.0 91.0 88.0 90.5 88.8
Joint F & Motion F 4425 85.0 90.8 92.9 92.3 96.7 91.5

Mean&Range 150 94.8 95.6 94.1 94.4 95.5 94.9
Five number summary 375 96.9 95.4 92.9 90.4 93.2 93.8

Four moments 300 97.1 96.0 93.6 94.7 95.4 95.4

Table 2: Accuracy (%) for classifiers (LDA, LASSO, SVM, RF, and GBM) according to the number of frames
using the proposed four-moment features

Classifiers Number of frames
10 20 30 40 50 60

LDA 93.2 95.3 97.1 96.5 96.5 97.0
Lasso 93.1 95.1 96.0 95.0 94.6 94.9
SVM 91.4 93.6 93.6 93.1 93.8 93.5
RF 93.6 94.8 94.7 94.5 94.4 94.3

GBM 92.5 94.2 95.4 95.1 94.9 94.9

Table 3: Confusion matrices obtained through 20-fold cross-subject cross-validation for the proposed method

Target
Walk Run Tennis

Prediction
Walk 75.55 2.70 1.15
Run 0.25 78.70 0.80

Tennis 1.40 0.70 77.05

Each fold comprises one subject with approximately 80 skeleton sequences in each exercise gameplay.

4.1. Example 1: Classification of exercise games

The dataset by Kim et al. (2022) represents 3D skeleton joint data for three exercise gameplays: Walk-
ing, running, and playing tennis. Twenty subjects performed each three-minute exercise game using
the Nintendo Switch’s ring fit adventure game. Kinect captured 5,400 frames for each participant’s
exercise gameplay. Since the same motion was performed repeatedly in that experiment, we extracted
a consecutive sequence of 60 frames, and about 80 sequences of data were collected for each game-
play for each participant. The initial frame of each sequence was adjusted such that the left foot was
closest to the ground and there were no overlapping frames. Here, we normalize all sequences’ initial
frame as in (2.1). The data resulted in a total of 4,766 samples for the three exercise gameplays. The
skeleton joint data are high-dimensional, with 25 joints captured in 60 frames, with 2,250 predic-
tors for classification. Hence, appropriate features were necessary for action classification from this
dataset.

Five features were used to evaluate the classification performance in this study. They can be clas-
sified into two types: One based on raw skeleton joint coordinates and the other based on summary
statistics of their distribution. The first type included joint features and joint features combined with
motion features, while the second type consisted of mean and range, five summary skeleton joint
statistics (Q1, Q2, Q3, minimum value, maximum value), and four moments (mean, variance, skew-
ness, kurtosis), which were proposed in this study.

Table 1 shows the accuracy of various features using LDA, LASSO, SVM, RF, and GBM clas-
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Table 4: Summary statistics of the number of frames according to the ten activities from 10 subjects

Frame Action
Cheering Eating Lying Siting down Siting still Standing up Tossing paper Using cleaner Walking Writing

Min 136.0 183.0 103.0 86.0 115.0 77.0 51.0 230.0 67.0 168.0
Avg 173.4 258.7 161.1 121.4 174.2 122.2 106.4 267.8 237.2 231.5
Max 214.0 373.0 206.0 180.0 216.0 182.0 159.0 339.0 359.0 357.0

Table 5: Accuracy (%) comparison in the MSR daily activity 3D dataset using different features (Joint F, Joint F
& Motion F, Mean & Range, five number summary, and our proposed four moments) and classifiers (LDA,
LASSO, SVM, RF, and GBM) with 30 frames

Features p Classifiers
LDA LASSO SVM RF GBM Avg.

Joint F 1800 81.0 82.0 71.0 85.0 79.0 79.6
Joint F & Motion F 3540 81.0 80.0 62.0 86.0 76.0 77.0

Mean&Range 120 82.0 91.0 89.0 91.0 87.0 88.0
Five number summary 300 85.0 88.0 87.0 89.0 84.0 86.6

Four moments 240 93.0 90.0 89.0 91.0 93.0 91.2

Table 6: Confusion matrices obtained through 10-fold cross-subject cross-validations for the proposed method

Prediction Target
Writing Walking Using cleaner Tossing paper Standing up Siting still Siting down Lying Eating Cheering

Writing 0.9 0 0 0 0 0 0 0 0 0
Walking 0 1 0 0 0 0 0 0 0 0

Using cleaner 0 0 0.8 0.1 0 0 0 0 0 0
Tossing paper 0 0 0.1 0.8 0 0 0 0 0 0
Standing up 0 0 0 0 1 0 0 0 0 0
Siting still 0 0 0 0 0 1 0 0 0 0

Siting down 0 0 0 0 0 0 0.8 0 0 0
Lying 0 0 0 0 0 0 0.2 1 0 0
Eating 0.1 0 0.1 0.1 0 0 0 0 1 0

Cheering 0 0 0 0 0 0 0 0 0 1

Each fold comprises one subject performing each of the ten activities once.

sifiers for exercise game classification. It reveals that only joint features result in the lowest perfor-
mance. Joint features combined with motion features improved the performance of most classifiers,
especially GBM. The statistical features perform relatively well regardless of the classifier, with the
mean and range features showing 94–95% accuracy. The five summary statistics features perform bet-
ter with the LDA model, while the moment features have the highest accuracy (97%) with the LDA
model and perform relatively well with other classifiers. The GBM method performs similarly using
both joints with motion and moment features.

The classifiers utilizing moment features are found to have stable accuracy, with the LDA model
outperforming the best. Table 2 shows the classifiers’ accuracy for frames between 10 and 60. The
results reveal that using more than 30 frames improves the accuracy over 10 or 20 frames in all
classifiers. However, the performance is not significantly improved even if the classifiers use more
than 30 frames (30, 40, 50, and 60). Therefore, we can infer that sequences of at least ten frames are
required, and utilizing distributions of at least 30 frames yields more reliable results. Based on these
findings, 30 consecutive frames should be utilized for better classification performance when using
moment features.

To identify the source of misclassification, we analyze the results of a 20-fold cross-subject cross-
validation (CSCV), which is used to generate the confusion matrix. The confusion matrices are cal-
culated for each fold, and they are averaged over the 20 folds for the LDA model. Note that each fold
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contains approximately 80 skeleton sequences per gameplay. Table 3 shows that four-moment feature
with LDA model effectively classifies the three exercise gameplays. The worst misclassification is
‘run’ classified as ‘walk’ with an average of 2.7 cases. Further examination of the raw data reveals
that such a participant is a female, with little difference in her gait between run and walk exercises.
Apart from this instance, the LDA model exhibits good classification performance.

4.2. Example 2: Analysis of MSR daily activity data

The MSR daily activity 3D dataset (Wang et al., 2012) is used as a real-world example in this study.
The dataset contains 3D skeleton joint data from 10 participants with 16 activities captured by Kinect,
where the participant performed each activity twice (once standing and the other sitting). We selected
10 standing activities: Writing, walking, using a vacuum cleaner, tossing paper, standing up, sitting
still, sitting down, lying on a sofa, eating, and cheering. The length of the skeleton joint sequences was
determined to be n = 100. As shown in Table 4, the length of the sequences varied among subjects and
activities, ranging from 51 to 553 frames. The activity duration varied by activity type, with ‘using
a vacuum cleaner’ being the longest and ‘tossing paper’ having the shortest number of frames. To
model the dataset, the number of frames is fixed at 30, and frames are periodically sampled from the
entire sequence. The same features and classifiers from section 4.1 are utilized.

Table 5 shows the accuracy of various features using LDA, LASSO, SVM, RF, and GBM clas-
sifiers for the MSR Daily Activity 3D dataset. The results show a similar pattern to the previous
example. Statistical features improve the model’s accuracy compared to only joint features or a com-
bination of joint and motion features. It is worth noting that the combination of joint and motion
features does not contribute to a significant improvement over only joint features, in contrast to the
results obtained in the previous dataset analysis. Nevertheless, the LDA and GBM classifiers based on
moment features perform the best, with an average accuracy of 93%.

Table 6 shows the results of the misclassification analysis using moments features obtained from
a 10-fold CSCV of the LDA model. Each fold in the CV corresponds to one participant performing
ten activities. As a result, each cell in the one CV will show either zero or one misclassification.
The results are an average of 10 folds. Out of the ten activities, six were accurately classified by all
participants, with misclassifications occurring in ‘writing on paper,’ ‘using a vacuum cleaner,’ ‘tossing
a paper,’ and ‘sitting down’. Notably, ‘sitting down’ is misclassified as ‘lying on a sofa,’ These two
activities were particularly confusing, as they are similar, requiring the participant’s whole body to
move downward from a standing up posture to a sitting down posture.

5. Conclusion

This study introduces a novel method for classifying human motion based on 3D skeletal joint data
using distributional features. Analysis results of two real examples reveal that the moment-based
features outperform traditional features in terms of stability and performance. Moment-based features
are versatile because they can be applied regardless of different activities or motions. The proposed
approach is based on the premise that joint distributions are distinct in different motions. The two
real-data analyses show that these assumptions work well.

Additionally, moment-based features make it easy to determine the appropriate number of frames.
This decision is equivalent to determining the number of frames representing the joint coordinate
distribution. As a result of evaluating the exercise game dataset, 30 consecutive frames corresponding
to one second of information show high classification performance irrespective of classifiers. For the
MSR daily activity dataset, 30 frames are sampled at regular intervals in each activity to examine the
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distribution. The results show that 30 frames perform better using moment-based features than other
features, indicating that the joint distribution can be described with that number of frames. However, it
is important to note that moment-based features may not be practical when used with a relatively small
number of frames which is not enough to represent the distribution. Also, with the MSR daily activity
dataset, the distribution of consecutive frames is not practical because each activity has a different
frame length, which means that equal numbers of consecutive frames are ineffective at distinguishing
between specific activities. As such, successive frames may or may not be practical, depending on the
application. Hence we need to sample the frames in a way that works for a given problem. Recent
studies have widely used deep learning models for 3D skeleton-based human motion classification,
and we will compare these methods with our proposed approach in the future.

References

Bagate A and Shah M (2019). Human activity recognition using rgb-d sensors. In Proceedings of
2019 International Conference on Intelligent Computing and Control Systems, Madurai, India,
902–905.
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