• Title/Summary/Keyword: sinusoidal loads

Search Result 112, Processing Time 0.029 seconds

A Study on Measurement and Analysis of Harmonics in Substation (변전소 고조파 측정 및 분석에 관한 연구)

  • Han Mu-Ho;Park Tae-Joon;Lee Seung-Hee;Lee Chi-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.438-441
    • /
    • 2001
  • Nonlinear loads change the sinusoidal nature of the ac power current, thereby resulting in the flow of harmonic currents in the ac power system that can cause interference with communication circuits and other type of equipment. To minimize the damage, it is needed to limit harmonics current and voltage. Harmonic measurement system was developed to measure individual voltage and current harmonic continuously and save harmonic data on computer. We measured all 154kV feeders in a steel making company substation. Voltage and current distortion limits for general transmission systems was suggested We found some feeders exceeded current distortion limits. As result voltage harmonic exceeded standard limits.

  • PDF

Advanced Repetitive Controller to Improve the Voltage Characteristics of Distributed Generation with Nonlinear Loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.409-418
    • /
    • 2013
  • This paper presents an enhanced control strategy which consists of a proportional-integral controller and a repetitive controller (RC) for improving the voltage performance of distributed generation (DG) under nonlinear load conditions. The proposed voltage controller is able to maintain a sinusoidal voltage at the point of common coupling (PCC) of the DG regardless of the harmonic voltage drop in the system impedance due to nonlinear load currents. In addition, by employing the delay time of the RC at one-sixth of the fundamental period, the proposed RC can overcome the slow response drawback of the traditional PI-RC. The proposed control strategy is analyzed and the design of the RC is presented in detail. The feasibility of the proposed control strategy is verified through simulation and experimental results.

A filed operation characteristics and the controversial point of Photovoltaic power generation system (태양광 발전시스템의 현장 운전특성 및 문제점)

  • Koh, Kang-Hoon;Suh, Ki-Young;Lee, Hyun-Woo;Hong, Doo-Sung;Gang, Yeong-Cheol;U, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.381-383
    • /
    • 2000
  • The photovoltaic power generation system has a great future as clean energy instead of fossil fuel which has many environmental problems such as exhausted gas or air pollution. In a utility interactive photovoltaic generation system, a three-phase inverter is used for the connection between the photovoltaic array and the utility. This paper presents a three phase inverter for photovoltaic power system with current controller, voltage controller, PLL control system and the phase detector of interactive voltage by using da transformation. The proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor. The results of the operated from January to October show the system characteristics.

  • PDF

An Improved Control Approach for DSTATCOM with Distorted and Unbalanced AC Mains

  • Singh, Bhim;Solanki, Jitendra
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 2008
  • This paper presents a new control approach of DSTATCOM (distribution static compensator) for compensation of reactive power, unbalanced loading and harmonic currents under unbalanced non-sinusoidal ac mains. The control of DSTATCOM is achieved using Adaline based current estimator based on LMS algorithm to maintain source currents real and undistorted. The dc bus voltage of voltage source converter (VSC) working as DSTATCOM is maintained at constant voltage using a proportional-integral (PI) controller. The DSTATCOM system alongwith proposed control scheme is modeled in MATLAB to simulate the behavior of the system. The practical implementation of the DSTATCOM is carried out using dSPACE DS1104 R&D controller having TMS320F240 as a slave DSP. Simulated and implementation results are presented to demonstrate the effectiveness of the DSTATCOM with Adaline based control to meet the severe load perturbations with different types of loads (linear and non-linear) under distorted and unbalanced AC mains.

Control Strategy of Resonant DC Link Inverter for UPS (UPS용 병렬공진형 직류링크인버터를 위한 제어방식에 관한 연구)

  • Beak, J.W.;Yoo, D.W.;Min, B.G.;Ryu, S.P.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.159-161
    • /
    • 1994
  • A new control technique which generates high-quality sinusoidal output voltage from a single-phase resonant do link inverter suitable for the UPS systems is presented. The inverter output voltage control system has the PID controller with a minor loop of the filter inductor current and tile feedforward controller. The proposed control scheme also solves resonant voltage overshoot without any additional switch or passive component, resulting in pulses with uniform amplitude and high efficiency. Experimental results in the case of linear and nonlinear loads are presented to confirm the usefulness of the Proposed control algorithms.

  • PDF

A Study on the control force of HMD for vibration control of the tall building structure (고층 구조물의 진동제어를 위한 복합형 질량댐퍼의 제어력 설계에 관한 연구)

  • Park, Jin-Il;Park, Hae-Dong;Choi, Hyun;Kim, Doo-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.276-281
    • /
    • 2000
  • As the construction of the high-rise building increases worldwide, the effort has been exerted to improve the safety and serviceability if the structure against various types of external dynamic loads such as wind load, seismic load, etc. The mass damper, defined as dynamic absorber in mechanical engineering is known one of the effective methods to control the vibration of flexible large structures. The hybrid mass damper, HMD is known as the most appropriate type of the mass dampers. In this paper, the control force was designed for HMD by numerical simulations and the performance of HMD to control the flexible vibration of the steel tower induced by sinusoidal force excitation was evaluated, also TMD was designed for a 1-DOF lumped mass model.

  • PDF

Performance Improvement of Model Predictive Control Using Control Error Compensation for Power Electronic Converters Based on the Lyapunov Function

  • Du, Guiping;Liu, Zhifei;Du, Fada;Li, Jiajian
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.983-990
    • /
    • 2017
  • This paper proposes a model predictive control based on the discrete Lyapunov function to improve the performance of power electronic converters. The proposed control technique, based on the finite control set model predictive control (FCS-MPC), defines a cost function for the control law which is determined under the Lyapunov stability theorem with a control error compensation. The steady state and dynamic performance of the proposed control strategy has been tested under a single phase AC/DC voltage source rectifier (S-VSR). Experimental results demonstrate that the proposed control strategy not only offers global stability and good robustness but also leads to a high quality sinusoidal current with a reasonably low total harmonic distortion (THD) and a fast dynamic response under linear loads.

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories

  • Attia, Amina;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.187-212
    • /
    • 2015
  • In this paper, various four variable refined plate theories are presented to analyze vibration of temperature-dependent functionally graded (FG) plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present model is reduced, significantly facilitating engineering analysis. These theories account for parabolic, sinusoidal, hyperbolic, and exponential distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Uniform, linear, nonlinear and sinusoidal thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from Hamilton's principle. Analytical solutions for the free vibration analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent and temperature-independent FG plates and validated with known results in the literature. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature fields on the vibration characteristics. It can be concluded that the present theories are not only accurate but also simple in predicting the free vibration responses of temperature-dependent FG plates.

Analysis of Dynamic Instability Characteristic of EP Shell Structures under Sinusoidal Excitations (정현파 하중을 받는 EP(Elliptic Paraboliodal)쉘 구조물의 동적 불안정 특성 분석)

  • Kim, Seung-Deog;Kim, Doo-Ri
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.127-134
    • /
    • 2010
  • The dynamic instability for snapping phenomena has been studied by many researchers. Few paper deal with the dynamic bucking under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of dynamic instability when shallow EP(Elliptic Paraboliodal) shell of two degree of freedom are subjected to sinusoidal excitation with direct snapping and indirect snapping. By using Newmark-$\beta$ method, we can get the nonlinear response, and characteristics of the dynamic instability through the running response spectrum by FFT(fast Fourier Transform) and attractors are compared in the phase plane. Dynamic buckling loads are strongly influenced by the relationships between the natural frequency of structures and the dominant frequency of incident excitations.

  • PDF