DOI QR코드

DOI QR Code

Performance Improvement of Model Predictive Control Using Control Error Compensation for Power Electronic Converters Based on the Lyapunov Function

  • Du, Guiping (School of Electric Power, South China University of Technology) ;
  • Liu, Zhifei (School of Electric Power, South China University of Technology) ;
  • Du, Fada (School of Electric Power, South China University of Technology) ;
  • Li, Jiajian (School of Electric Power, South China University of Technology)
  • Received : 2016.11.16
  • Accepted : 2017.03.27
  • Published : 2017.07.20

Abstract

This paper proposes a model predictive control based on the discrete Lyapunov function to improve the performance of power electronic converters. The proposed control technique, based on the finite control set model predictive control (FCS-MPC), defines a cost function for the control law which is determined under the Lyapunov stability theorem with a control error compensation. The steady state and dynamic performance of the proposed control strategy has been tested under a single phase AC/DC voltage source rectifier (S-VSR). Experimental results demonstrate that the proposed control strategy not only offers global stability and good robustness but also leads to a high quality sinusoidal current with a reasonably low total harmonic distortion (THD) and a fast dynamic response under linear loads.

Keywords

References

  1. M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics, New York, NY, USA: Academic, 2002.
  2. J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, J. Pontt, and P. Lezana, "PWM regenerative rectifiers: State of the art," IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 5-22, Feb. 2005. https://doi.org/10.1109/TIE.2004.841149
  3. F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, "Overview of control and grid synchronization for distributed power generation systems," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1398-1409, Oct. 2006. https://doi.org/10.1109/TIE.2006.881997
  4. P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, "Predictive control in power electronics and drives," IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4312-4324, Dec. 2008. https://doi.org/10.1109/TIE.2008.2007480
  5. S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young, A. Marquez, and P. Zanchetta, "Model predictive control: A review of its applications in power electronics," IEEE Ind. Electron. Mag., Vol. 8, No. 1, pp. 16-31, Mar. 2014. https://doi.org/10.1109/MIE.2013.2290138
  6. M. Preindl and E. Schaltz, "Sensorless model predictive direct current control using novel second order PLL-observer for PMSM drive systems," IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4087-4095, Sep. 2011. https://doi.org/10.1109/TIE.2010.2100331
  7. S. Mariethoz, A. G. Beccuti, G. Papafortiou, and M. Morari, "Sensorless explicit model predictive control of the DC-DC buck converter with inductor current limitation," in Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1710-1715, Feb. 2008.
  8. J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, "Predictive current control of a voltage source inverter," IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 495-503, Feb. 2007. https://doi.org/10.1109/TIE.2006.888802
  9. M. A. Perez, P. Cortes, and J. Rodriguez, "Predictive control algorithm technique for multilevel asymmetric cascaded H-bridge inverters," IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4354-4361, Dec.2008. https://doi.org/10.1109/TIE.2008.2006948
  10. P. Cortes, J. Rodriguez, C. Silva, and A. Flores, "Delay compensation in model predictive current control of a three-phase inverter," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1323-1325, Feb. 2012. https://doi.org/10.1109/TIE.2011.2157284
  11. Y. Zhang, W. Xie, Z. Li, and Y. Zhang, "Low complexity model predictive power control double vector-based approach," IEEE Trans. Ind. Electron., Vol. 61, No. 11, pp. 5871-5880, Nov. 2014. https://doi.org/10.1109/TIE.2014.2304935
  12. C. Xia, T. Liu, T. Shi, and Z. Song, "A simplified finite control set model predictive control for power converters," IEEE Trans. Ind. Informat., Vol. 10, No. 2, May 2014.
  13. H. A. Young, M. A. Perez, J. Rodriguez, H. Abu-Rub, "Assessing finite-control-set model predictive control: a comparison with a linear current controller in two-level voltage source inverters," IEEE Ind. Electron. Mag., Vol. 8, No. 1, pp. 44-52, Mar. 2014. https://doi.org/10.1109/MIE.2013.2294870
  14. R. P. Aguilera, P. Lezana, and D. E. Quevedo, "Switched model predictive control for improved transient and steady-state performance," IEEE Trans. Ind. Informat., Vol. 11, No. 4, pp. 968-977, Aug. 2015. https://doi.org/10.1109/TII.2015.2449992
  15. P. Das, M. Pahlevaninezhad, J. Drobnik, G. Moschopoulos, and P. K. Jain, "Nonlinear controller based on a discrete energy function for an AC/DC boost PFC converter," IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5458-5476, Dec. 2013. https://doi.org/10.1109/TPEL.2012.2232681
  16. M. Pahlevaninezhad, P. Das, J. Drobnik, P. K. Jain, and A. Bakhshai, "A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles," IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 2085-2103, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2170098
  17. M. Pahlevaninezhad, P. Das, J. Drobnik, G. Moschopoulos, P. K. Jain, and A. Bakhshai, "A nonlinear optimal control approach based on the control-Lyapunov function for an AC/DC converter used in electric vehicles," IEEE Trans. Ind. Informat., Vol. 8, No. 3, pp. 596-614, Aug. 2012. https://doi.org/10.1109/TII.2012.2193894
  18. H. Komurcugil, N. Altin, S. Ozdemir, and I. Sefa, "Lyapunov-function and proportional-resonant based control strategy for single-phase grid connected VSI with LCL filter," IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2838-2849, May 2016. https://doi.org/10.1109/TIE.2015.2510984
  19. H. Komurcugil, N. Altin, S. Ozdemir, and I. Sefa, "An extended Lyapunov-function-based control strategy for single-phase UPS inverters," IEEE Trans. Power Electron., Vol. 30, No. 7, pp. 3976-3983, Jul. 2015. https://doi.org/10.1109/TPEL.2014.2347396
  20. H. Komurcugil and O. Kukrer, "Lyapunov-based control for three-phase PWM AC/DC voltage-source converters," IEEE Trans. Power Electron., Vol. 13, No. 5, pp. 801-813, Sep. 1998. https://doi.org/10.1109/63.712278
  21. M. P. Akter, S. Mekhilef, N. M. L. Tan, and H. Akagi, "Modified model predictive control of a bidirectional AC-DC converter based on Lyapunov function for energy storage systems," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 704-715, Feb. 2016. https://doi.org/10.1109/TIE.2015.2478752
  22. J.-J. E. Slotineand and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ, USA: Prentice-Hall, 1991.
  23. S.-J. Jeong and S.-H. Song, "Improvement of predictive current control performance using online parameter estimation in phase controlled rectifier," IEEE Trans. Power Electron., Vol. 22, No. 5. pp. 1820-1825, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904235