• Title/Summary/Keyword: sinusoidal data

Search Result 142, Processing Time 0.029 seconds

A study on the nonlinear error correction of the phase measuring profilometry (PMP 형상 측정법에서 비선형 오차보정에 관한 연구)

  • 황용선;강영준;박낙규;백성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.513-516
    • /
    • 2003
  • Phase Measuring Profilometry(PMP) has been developed as one of three dimensional 3-D shape measuring methods. The 3-D profile of an object was calculated from the phase data obtained by the sinusoidal patterns projected on the object. However, in some cases the approximation includes considerable errors. In this paper, the effect on the errors caused by the optical geometry and the calibration procedure in PMP technique are discussed. The errors which occured in the process of calculating the 3-D profile from the phase distribution are investigated theoritically and experimentally.

  • PDF

Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools (공작기계 열오차 모델의 최적 센서위치 선정)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

Performance Evaluation Study of Digital Watthour Meter using RTDS (RTDS를 이용한 Digital 적산전력량계의 성능 평가연구)

  • Kang, Min-Kyu;Park, Seok-Hoon;Kim, Woo-Hyun;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.163-165
    • /
    • 1999
  • This work presents the performance characteristic of digital watthour meter under the harmonics of voltage and current. Each waveform involved is different in magnitude phase, and THD(Total Harmonic Distortion). It is possible to generate harmonics and control those waveforms using RTDS(Real Time Digital Simulator). Tests were performed on a selected sample of three-phase digital watthour meter which is coupled with data acquisition system via RS 485/232 converter. The percentage error rate of the watthour meter is compared for both sinusoidal and nonsinusoidal cases and the results are given.

  • PDF

The SPWM Fuzzy Controller for speed control of Induction Motor

  • Kamsri, T.;Riewruja, V.;Ukakimaparn, P.;Pongswatd, S.;Kummool, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.465-465
    • /
    • 2000
  • The paper presents the fuzzy control technique to adjust the gain schedule in the fuzzy controller. The micro computer is designed to the fuzzy controller to execute the proportional gain with the data of the error and speed command. The gain schedule is the fuzzy set which execute based on the fuzzy rule. The gain schedule from the fuzzy controller is fed to the sinusoidal pulse width modulation (SPWM) inverter for control the response and speed of the induction motor. The induction motor coupling to the DC motor and tachogenerator which DC motor as a load. The test result of the fuzzy control technique in the open loop control, it provides a good response and in the closed loop control it can control speed in the any condition of load design

  • PDF

An Emphirical Closed Loop Modeling of a Suspension System using a Neural Networks (신경회로망을 이용한 폐회로 현가장치의 시스템 모델링)

  • 김일영;정길도;노태수;홍동표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.384-388
    • /
    • 1996
  • The closed-loop system modeling of an Active/semiactive suspension system has been accomplished through an artificial neural Networks. The 7DOF full model as the system equation of motion has been derived and the output feedback linear quadratic regulator has been designed for the control purpose. For the neural networks training set of a sample data has been obtained through the computer simulation. A 7DOF full model with LQR controller simulated under the several road conditions such as sinusoidal bumps and the rectangular bumps. A general multilayer perceptron neural network is used for the dynamic modeling and the target outputs are feedback to the input layer. The Backpropagation method is used as the training algorithm. The modeling of system and the model validation have been shown through computer simulations.

  • PDF

Free Vibrations of Tapered Columns with Constant Volume (일정체적 변단면 기둥의 자유진동)

  • 이병구;이태은;최규문;송주한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.417-422
    • /
    • 2002
  • The main purpose of this paper is to determine the dynamic optimal shapes of tapered column with constant volume. The linear, parabolic and sinusoidal tapers with the regular polygon cross-section are considered, whose material volume and span length are always held constant. The ordinary differential equation including the effect of axial load is applied to calculate the natural frequencies. The Runge-Kutta method and Regula-Falsi methods are used to integrate the differential equation and compute the frequencies, respectively. Then the dynamic optimal shape whose lowest natural frequency is highest is determined by reading the critical value of the frequency versus section ratio curve plotted by the frequency data. In the numerical examples, the tapered columns are analysed and the numerical result of this study are shown in table and figures.

  • PDF

Modal Identification of a randomly excited 1-D structure using Scanned data (스캐닝 데이터를 이용한 랜덤 가진된 일차원 구조물의 모달 분석)

  • 경용수;왕세명;김상명;박기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.241-246
    • /
    • 2002
  • Usually vibration properties are obtained from frequency response functions or impulse response functions of a system. Since the contact type sensors can affect the characteristics of vibrating systems, the non-contact type sensors such as laser Doppler vibrometer (LDV) are being widely used. Currently researches are being carried out in terms of modal analysis using a scanning vibrometer. For the continuous scan; the Chebyshev demodulation (or polynomial) is apparently suggested to extract the mode shapes. With single frequency sinusoidal excitation, this approach is well fitted. In this research, the Chebyshev demodulation technique has been applied to the impact excitation case. The vibration of the tested structure is modeled using impulse response functions. The technique is also adopted to the random excitation case. In order to verify the technique, a simply supported beam was chosen as the test rig. The calculation modules are developed by using MATLAB$\^$(R)/ in WindowsNT$\^$(R)/ environment.

  • PDF

Design of A Simulation S/W for Evaluation of Auto-Landing Algorithms

  • Yoon sug-joon;Kim kang-soo;Ahn jae-joon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.3-8
    • /
    • 2003
  • A Simulation S/W is developed to evaluate performances of MLS (Microwave Landing System) and IBLS(Integrated Beacon Landing System) in precision auto-landing. For this study classical PID and optimal LQG controllers are developed as well as mathematical models of MLS and IBLS. Ship-landing condition is also considered by assuming sinusoidal movement of the ship in the pitch direction. The simulated aircraft is F-16 in the study of precision auto-landing. For the integrated simulation environment GUI windows are designed for input of parameter values necessary for simulation, such as vehicle performance and environmental data. For validation and verification of models various comparison graphs of simulation outputs are comprised in the GUI design as well as 3D visual simulation of vehicle dynamics.

  • PDF

Static Optimal Shapes of Tapered Beams with Constant Volume (일정체적 변단면 보의 정적 최적단면)

  • 이병구;이태은;최규문;김영일
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.115-122
    • /
    • 2002
  • The main purpose of this paper is to determine the static optimal shapes of tapered beams with constant volume. The linear, parabolic and sinusoidal tapers with the regular polygon cross-section are considered, whose material volume and span length are always held constant. The Runge-Kutta method is used to integrate the differential equation and also Shooting method is used to calculate the unknown boundary condition. Then the static optimal shapes are determined by reading the minimum values of the deflection versus section ratio curves plotted by the deflection data. In numerical examples, the various tapered beams are analyzed and those numerical results of this study are shown in figures.

  • PDF

A Study on Measurement and Analysis of Harmonics in Substation (변전소 고조파 측정 및 분석에 관한 연구)

  • Han Mu-Ho;Park Tae-Joon;Lee Seung-Hee;Lee Chi-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.438-441
    • /
    • 2001
  • Nonlinear loads change the sinusoidal nature of the ac power current, thereby resulting in the flow of harmonic currents in the ac power system that can cause interference with communication circuits and other type of equipment. To minimize the damage, it is needed to limit harmonics current and voltage. Harmonic measurement system was developed to measure individual voltage and current harmonic continuously and save harmonic data on computer. We measured all 154kV feeders in a steel making company substation. Voltage and current distortion limits for general transmission systems was suggested We found some feeders exceeded current distortion limits. As result voltage harmonic exceeded standard limits.

  • PDF