Design of A Simulation S/W for Evaluation of
Auto-Landing Algorithms

M

=~
L.

Ho

* . Z212F

2zsr - oby

* %

M

e

Yoon sug-joon® « Kim kang-soo™ - Ahn jae-joon™

Abstract

Key Words

A Simulation S/W is developed to evaluate performances of MLS (Microwave Landing System) and IBLS
(Integrated Beacon Landing System) in precision auto-landing. For this study classical PID and optimal LQG
controllers are developed as well as mathematical models of MLS and IBLS. Ship-landing condition is also
considered by assuming sinusoidal movement of the ship in the pitch direction. The simulated aircraft is F-16
in the study of precision auto-landing. For the integrated simulation environment GUI windows are designed
for input of parameter values necessary for simulation, such as vehicle performance and environmental data.
For validation and verification of models various comparison graphs of simulation outputs are comprised in the
GUI design as well as 3D visual simulation of vehicle dynamics.

Aircraft, Simulation, Software, Auto-landing, Algorithms, Test Evaluation

1. Introduction

This study is to compare performances and
stabilities of MLS (Microwave Landing Sy-
stem)[1]-[3] and IBLS (Integrated Beacon
Landing System) [4]-[6] in precision auto-
landing. For this study classical and optimal
controllers are developed as well as mathematical
models of MLS and IBLS. Ship-landing condition
is also considered by assuming sinusoidal
movement of the ship in the pitch direction,
F-16 was chosen for the study of precision
auto-landing, because reliable UAV data was

not available at the time of this study.

* Associate Professor, Dept. of Aerospace Engineering
** Research Assistant, Dept. of Aercspace Engineering

Mathematical models are realized in Matlab[7],
Simulink and Sfunctions [81,[9] comprising C
codes, which can be translated into C codes for
real-time or fasttime simulation. For the integrated
simulation environment GUI windows are designed
for input of parameter values necessary for
simulation, such as vehicle performance and
environmental data. For validation and verification
of models graphical expressions of various
simulation results are also comprised in the GUI
design as well as 3D visual simulation of vehicle
dynamics, Thus the simulation S/W is composed
of mathematical models, scheduler, GUI, and
graph manager.

H0
Y

oy
45

2
HM

2. Development and Integrated Software
Environment

The development efforts for the integrated
simulation S/W are described in its four major

components,

2.1 MATLAB/SIMULINK MODELS

Matlab and Simulink models express flight
dynamics, guidance sensors, controllers, and
atmospheric environments[12]. The flight dyna-
mics of general airplanes, including F16[11], is
modeled in S-function composed of C codes.
Guidance sensor models of IBLS and MLS are
expressed in Simulink blocks for easy access
during real-time or non-real-time simulations,
The Simulink models are controlled in realtime
by the scheduler, using ‘sim’ command of
Matlab. For the purpose, an input-port is added
as shown in Figure 1, and the simulation begins
right after initial values and a trigger signal are
delivered to the Simulink models via the
input-port. The simulation results are retrieved
from the Simulink blocks to GUI and Graph
Manger through ‘To workspace’ command as

shown in Figure 2.

Figure 1. Control of Simulink Blocks in the
UAV Simulation S/W

2.2 SCHEDULER

The scheduler takes a role of controlling
various data and events occurring during the
simulation process., The scheduler also enables
the GUI component, which is written In
Active-X controls of MS Windowsiz), to
communicate with the Simulink components by
way of callback functions.

The scheduler includes ‘actxcontrol’ command,
as in Figure 3, in order to transmit the events
from GUI to the Matlab and
Then this

handle values in order for Active-X controls to

Simulink
components, command returns
be operable on Matlab and Simulink. A
programmer can access to Active-X controls by
way of these handle values, and designates
callback functions for events from Active-X
controls by using ‘actxcontrol’ command. The
callback functions are used to control Matlab
and Simulink components in this S/W development.

In order to register Active-X controls in
Matlab, ‘Container’ must be generated first by
‘figure’ command as in Figure 4. Then ‘test. VBCtrl
is registered at Matlab workspace by using
relevant handle values. During this process
‘allevents’ is registered together as a callback
function of the event. This function is called
each time its registered event occurs, and

Figure 2. Simulink Blocks Showing Simulation

Data Retrieval

_ 4 _

Design of A Simulation S/W for Evaluation of Auto-Landing Algorithms

relevant arguments are returned. The argu-
ments consist of handle values, event names for
calls, and so on, The scheduler processes relevant
events using these arguments,

The scheduler becomes active each time an
event occurs, and a relevant workspace is
generated, Since a relevant workspace dies
when the scheduler becomes inactive, an
additional effort has to be considered in order to
reserve necessary data. Among feasible options
a method is chosen in this study, which is to
store necessary data at the root area of ‘figure’
in the form of ‘structure’. As in Figure 4,
‘UserData’ is retrieved from the root of ‘figure’
by using ‘get’ function, and is stored at the root
area again when the scheduler becomes
inactive. An advantage of this method is that
any data can be processed conveniently at a

sufficiently high speed.

p=cd:

f=figure('pos’, [10 155 725 540]);

set(f, 'MenuBar’, 'none’):

set(f, Resize’, ‘off’);

set(f, NumberTi tle', ‘off’):

set(f, 'Name', ‘Flight Control Simulation’);
% "

h=actxcontrol(‘test. VBctrl', [00725540] 1,...
{..

Tnitail,” ‘allevens':...

“Trim’, allevents’:...
?
?

Figure 3. An Example of Active-X Controls
Used in the Scheduler

function allevents(varargin)
h=varargin{1{;

f=h FigureHandle:
MM=get (0, ‘UserData’):

addpath([h.currentpath’/mls/main__guli
W1,

switch varargin{4}

case ‘Initial’

7

?

?
case ‘QuickSave'
cd(h.CurrentPath):
2.3 GUI

GUI of the UAV simulation S/W is realized
in the form of an Active-X control, using
Visual Basic provides a

Visual Basic.

convenient development environment in
designing GUI, and allows quick configuration
of events and attributes. GUI is composed of
three major components, The first component is
the GUI window for setting parameter values
necessary for simulation. Through this GUI
component various initial conditions for test and
evaluation can be set. This module allows store
and retrieval of simulation results in the form of
The second GUI

component comprises option-setting functions

common computer files.

for viewing simulation results in plots or graphs.
The GUI provides buttons, which are linked to
‘plot” functions of Matlab for automatic generation
of various performance graphs. A user of the
simulation S/W is supposed to set options in
this GUI window for viewing necessary information.
The third component of GUI is to visualize

— 5 —

)
A
Y
o
5

2
M

flight trajectory in 3D graphics. The 3D graphic
animation is realized by the graphic simulation
technology used in debriefing processes of flight
training devices. The 3D graphic environment is
coded in C++ and Open GL, and encapsulated
in an Active-X control, which is integrated in
the total GUI environment using Visual Basic.
This GUI component allows visual understanding
of attitudes and positions of a simulated
aircraft, varying in time. The speed of the
image replay can be controlled by a sliding bar

in the GUI component.

2.4 GRAPH MANAGER

Simulation resuls are provided in the form of

-5 Fight Carivet Skouiaon

Drezerae wingd ust biode
&

<ate sengh atmedan/ig: sditucas (oot

Bost Leesth Ly dy daf Yeg)
B E b

HERORY Waig oo et

o Bus wtpdats lug g w3l dreiisecond} 54
[4R sl iited woise samole Yme {vcannst
e Shex Hodst Hoisy swads 13 o2 wy 031

FETPRTERY AT
Giod spead 2 00 ired alhsin leelrrzres)
i

Eind dometon ot X0 et nide (degrres cw
e

& Guund
¢ Se

Mk Feocd 1Zrec ALl
Maxage Diry ol

Y

Clasgic » MLS « Srouad

Sergtaton Tome [155 pee Simeswd. Biock Naey [
: . Sredaico St
Sow | Close | MSER] taw ot { Rewertate {1 LRHET
Sinrasianon Commana -

St Mottar Comenars: |

Mosel E41
[

Figure 5. Simulation Environment Setting at GUI

=} flight Cantro) Gimnlatan

Elapsed Time |

Sowed ‘X o . »

Figure 7. A Snap Shot of 3D Visual Simulation

numerical data. The graph manager makes the
analysis more intuitive by transforming the
data into graphical forms. The graph manager
developed for the purpose takes advantage of
Matlab’ s plot functions. This graph manager
is coded in Matlab functions, and called by the
scheduler,

3. Examples and Test Evaluation

Some of the simulation results are plotted in
Figure 8-10. The legends in the figures represent
the auto-landing conditions in Table 1. Figures
show that IBLS and MLS satisfy the
requirements of CAT III precisionfo) auto-

| ey [T E
P Gaae T FET
" E

Dirvwsaton Sese [T ane

T doha T Bet

Ao O Torose 7 GeenaR

2

20 40 80 100 120

Figure 8. Comparison of Deviations in the Lateral
Direction during Ground Landing with

No Disturbance

_ 6 —

Design of A Simulation S/W for Evaluation of Auto-Landing Algorithms

landing when they are combined with either

classical or optimal controllers,

200¢-

20001

-4000-

X {fty

-6000-

-8000-

-1000¢- -
L 85 %0 5 Tlme}‘ggc, 705 710 15
Figure 9. Comparison of Deviations in the Lon-

gitudinal Direction during Ship Landing
with Gusty Wind
1601 .
1400~ N .
120¢ ‘. '
1004+
% 804
600+
400+
% 70 20 50 30 00 - 120
Time (sec)
Figure 10. Comparison of Altitudes during Ship
Landing with Gusty Wind
Symbols | Auto-Landing Condotions
Classic | PID Control + Ground
CMG Classical + MLS + Ground
CIG Classical + IBLS + Ground
CMS Classical + MLS + Sea
LQG LQG + Ground
LIG LQG + IBLS + Ground
LMS LQG + MLS + Sea

4. Conclusions

A Simulation S/W was developed for test
and evaluation of precision auto-landing algo-
rithms, The S/W is based on various computer
languages such as Matlab, Simulink, C++,
Visual Basic, and Open GL. In order to integrate
subsystems coded in these different languages
from each other, Active-X controls and callback

functions were effectively used,
Reference

(1] Clark E. Cohen, Boris Pervan, Real-Time
Cycle Ambiguity Resolution using a Pseudolite
for Precision Landing of Aircraft With
GPS, 1993. 3.30

[2] Clark E. Cohen, Boris Pervan, Real-Time
Flight Test Evaluation of the GPS Marker
Beacon Concept for Category III Kinematics
GPS Precision Landing, ION GPS-93, 1993.
9.22

[3] Clark E. Cohen, Boris Pervan, Precision
Landing Tests with Improved Integrity
Beacon Pseudolites, [ON GPS-95, 19959

[4] R. J. Kelly and E. F. C. LaBerge, “MLS:
A Total System Approach,” IEEE AES
Mag., pp.27~40, May, 1990

[5] M. H. Carpentier, Principles of Modern
Radar System, Artech House, London, UK, 1988.

[6] D. K. Barton, Modern Radar System
Analysis, Artech House, London, UK, 1988.

[7] Using Matlab, Version 5, Mathworks Inc,, 1999.

(8] Using Simulink, Version 3.0, Mathworks
Inc., 1999.

[9] Real-time Workshop User's Manual,
Version 3.0, Mathworks Inc,, 1999.

El]
My
N
oy
>

K
>
=

HH

[10] MIL-F-8785C, “U. S. Dept. of Defense
Military Specification: Flying Qualities of
Piloted Airplanes”, Nov.5.1980.

[11] Brian L. Stevens, Frank L. Lewis, “Aircraft
Control and Simulation”, 1992, John Willy

& Sons.
[12] Robert C. Nelson, “Flight Stability and
Automatic Control”, 1998, McGraw-hill.
[13] Microsoft MSDN Library, October, 2002.

