• Title/Summary/Keyword: singularity

Search Result 634, Processing Time 0.03 seconds

p-Adaptive Finite Element Analysis of Stress Singularity Problems by Ordinary Kriging Interpolation (정규 크리깅보간법을 이용한 응력특이문제의 p-적응적 유한요소해석)

  • Woo Kwang-Sung;Park Mi-Young;Park Jin-Hwan;Han Sang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.849-856
    • /
    • 2006
  • This paper is to examine the applicability of ordinary Kriging interpolation(OK) to the p-adaptivity of the finite element analysis that is based on variogram. In the p-refinement, the analytical domain has to be refined automatically to obtain an acceptable level of accuracy by increasing the p-level non-uniformly or selectively. In case of non-uniform p-distribution, the continuity between elements with different polynomial orders is achieved by assigning zero higher-order derivatives associated with the edge in common with the lower-order derivatives. It is demonstrated that the validity of the proposed approach by analyzing results for stress singularity problem.

  • PDF

Flow Analysis around a Wing Section by a Piecewise Linear Panel Method (부분선형 패널법을 이용한 2차원 날개단면 주위 유동 해석)

  • Park, Gi-Duck;Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.380-386
    • /
    • 2015
  • Panel methods are useful tools for analyzing fluid-flow around a wing section. It has the advantage of fast and accurate calculation, compared to other CFD Methods such as RANS solvers. This paper suggests a piecewise linear panel method in order to improve accuracy of existing panel methods by changing the piecewise constant singularity strength to linear singularity strength(for dipole strength). The piecewise linear panel method adopts the linear distribution of singularity strength, while control point is located at the node of each panel. Formulation of the piecewise linear panel method is given, and some calculation results are shown for typical wing sections.

SINGULARITY ESTIMATES FOR ELLIPTIC SYSTEMS OF m-LAPLACIANS

  • Li, Yayun;Liu, Bei
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1423-1433
    • /
    • 2018
  • This paper is concerned about several quasilinear elliptic systems with m-Laplacians. According to the Liouville theorems of those systems on ${\mathbb{R}}^n$, we obtain the singularity estimates of the positive $C^1$-weak solutions on bounded or unbounded domain (but it is not ${\mathbb{R}}^n$ and their decay rates on the exterior domain when ${\mid}x{\mid}{\rightarrow}{\infty}$. The doubling lemma which is developed by Polacik-Quittner-Souplet plays a key role in this paper. In addition, the corresponding results of several special examples are presented.

ON THE TANGENT SPACE OF A WEIGHTED HOMOGENEOUS PLANE CURVE SINGULARITY

  • Canon, Mario Moran;Sebag, Julien
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.145-169
    • /
    • 2020
  • Let k be a field of characteristic 0. Let ${\mathfrak{C}}=Spec(k[x,y]/{\langle}f{\rangle})$ be a weighted homogeneous plane curve singularity with tangent space ${\pi}_{\mathfrak{C}}:T_{{\mathfrak{C}}/k}{\rightarrow}{\mathfrak{C}$. In this article, we study, from a computational point of view, the Zariski closure ${\mathfrak{G}}({\mathfrak{C}})$ of the set of the 1-jets on ${\mathfrak{C}}$ which define formal solutions (in F[[t]]2 for field extensions F of k) of the equation f = 0. We produce Groebner bases of the ideal ${\mathcal{N}}_1({\mathfrak{C}})$ defining ${\mathfrak{G}}({\mathfrak{C}})$ as a reduced closed subscheme of $T_{{\mathfrak{C}}/k}$ and obtain applications in terms of logarithmic differential operators (in the plane) along ${\mathfrak{C}}$.

Geometric Optimization Involving Contact Stress Singularities (특이 접촉응력 문제의 형상 최적화)

  • Park, Jung-sun;Lee, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.180-188
    • /
    • 1996
  • The stress singularity of a sharp wedge contacting a half plane can be avoided by changing the wedge shape. Shape optimization is accomplished with the geometric strain method (GSM), an optimality criterion method. Several numerical examples are provided for different materials in the wedge and half plane to avoid stress singularity neal the sharp corner of the wedge. Optimum wedge shapes are obtained and critical corner angles are compared with the angles from analytical contact mechanics. Numerical results are well matched to analytical and experimental results. It is shown that shape optimization by the geometric strain method is a useful tool to reshape the wedge and to avoid a stress singulatiry. The method applies to more general geometries where the singular behavior would be difficult to avoid by classical means.

Prediction of crack propagation path in IC package by BEM (경계요소법에 의한 반도체 패키지의 균열진전경로 예측)

  • Song, Chun-Ho;Chung, Nam-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.286-291
    • /
    • 2001
  • Applications of bonded dissimilar materials such as IC package, ceramic/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edges in bonded joints of dissimilar materials. In orer to understand the package crack emanating from the edge of Die pad and Resin, fracture mechanics of bonded dissimilar materials and material properties are obtained. In this paper, the thermal stress and its singularity index for the IC package were analyzed using 2-dimensional elastic boundary element method. Crack propagation angle and path by thermal stress were numerically simulated with boundary element method.

  • PDF

Finite Element Analysis Using an Analytical Solution (해석해를 이용한 유한 요소 해석법)

  • Huh, Young-Woo;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.458-463
    • /
    • 2000
  • The mechanical structures generally have discontinuous parts such as the cracks, notches and holes owing to various reasons. In this paper, in order to analyze effectively these singularity problems using the finite element method, a mixed analysis method which an analytical solution and finite element solutions are simultaneously used is newly proposed. As the analytical solution is used in the singularity region and the finite element solutions are used in the remaining regions except this singular zone, this analysis method reasonably provides for the numerical solution of a singularity problem. Through various numerical examples, it is shown that the proposed analysis method is very convenient and gives comparatively accurate solution.

  • PDF

Prediction of Crack Propagation Path Using Boundary Element Method in IC Packages (반도체 패키지의 경계요소법에 의한 균열진전경로의 예측)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • Applications of bonded dissimilar materials such as integrated circuit(IC) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in bonded joints of dissimilar materials. In order to investigate the IC package crack propagating from the edge of die pad and resin, the fracture parameters of bonded dissimilar materials and material properties are obtained. In this paper, the thermal stress and its singularity index for the IC package were analyzed using 2-dimensional elastic boundary element method(BEM). From these results, crack propagation direction and path by thermal stress in the IC package were numerically simulated with boundary element method.

Method of Numerical Simulation by Using the Local Harmonic Functions in the Cylindrical Coordinates (국소적 조화함수를 사용한 원통좌표계에서의 유동 해석)

  • Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.300-305
    • /
    • 2007
  • Many practical flow problems are defined with the circular boundary. Fluid flows within a circular boundary are however susceptible to a singularity problem when the cylindrical coordinates are employed. To remove this singularity a method has been developed in this study which uses the local harmonic functions in discretization of derivatives as well as interpolation. This paper describes the basic reason for introducing the harmonic functions and the overall numerical methods. The numerical methods are evaluated in terms of the accuracy and the stability. The Lamb-dipole flow is selected as a test flow. We will see that the harmonic-function method indeed gives more accurate solutions than the conventional methods in which the polynomial functions are utilized.

A Simple Analysis to Obtain a Singularity near a Crack Perpendicular to Bimaterial Interface by Using 8-node Isoparametric Element (8절점 등매개 요소를 이용하여 이종재료 접합면에 수직인 크랙의 특이성 표시를 위한 간편해석법)

  • Won-Kyun Lim;Sang-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 1992
  • Numerical method by Abdi et al. for obtaining a stress singularity near a crack perpendicular to the interface between two elastic materials is reviewed. More efficient and simple method to obtain crack singularity by shifting a mid-side node of 8-node isoparametric element is presented. It is observed that the present analysis provides increased accuracy for the expression of the opening displacement and the determination of the optimal position of the mid-side node for a wide range of material properties.

  • PDF