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p-Adaptive Finite Element Analysis of Stress Singularity
Problems by Ordinary Kriging Interpolation
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ABSTRACT

This paper is to examine the applicability of ordinary Kriging interpolation(OK) to the
p—adaptivity of the finite element analysis that is based on variogram. In the p—refinement, the
analytical domain has to be refined automatically to obtain an acceptable level of accuracy by
increasing the p—level non—uniformly or selectively. In case of non—uniform p—distribution, the
continuity between elements with different polynomial orders is achieved by assigning zero
higher—order derivatives associated with the edge in common with the lower—order derivatives.
It is demonstrated that the validity of the proposed approach by analyzing results for stress
singularity problem.
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1. Introduction

In the finite eclement method, the interpolation is important and fundamental to graphing,
analyzing and understanding of 2D data. The Kriging interpolation technique is a method of
interpolation which predicts unknown values from data observed at known locations(Stein, 1999).
This method uses variogram to express the spatial variation, and it minimizes the error of
predicted values which are estimated by spatial distribution of the predicted values. Kriging is a
form of weighted average estimator. The weight factors to interpolate the spatial data at arbitrary
locations are assigned on the basis of a model fitted to a function, such as the variogram, which
represents spatial structure in the variable of interest.

In this study, the weighted least—square is applied to obtain the estimated exact solution from
the stress data at the Gauss points. The weight factor is determined by experimental and
theoretical variogram for interpolation of stress data apart from the conventional interpolation
methods including the least—square fitting that use an equal weight factor.

The adaptive finite element analysis consists of two stages: a posteriori error estimate and the
mesh refinement. The goal is to refine the mesh so that the error is within the specified
tolerance and is as uniformly distributed throughout the domain as possible. The estimated errors
in the finite element solution are of primary importance. To minimize the computational cost, an
effective and reliable technique of post—processing is necessary for use in adaptive mesh
refinement. Two types of a posteriori error estimates, namely the stress recovery procedure and
the residual technique, may be considered. Stress recovery procedures can be classified as local
(ie. element level), patch—based, and global(Yazdani & Riggs, 2000). A recent patch—based
procedure is the Superconvergent Patch Recovery (S.P.R.) technique introduced by Zienkiewicz
and Zhu {or 7Z/7)(1992) and subsequently refined by others(Boroomand & Zienkiewicz, 1997;
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. Wiberg). It is known that the Z/Z error estimate has not been applied to the
‘p~refinementbecause the shape functions used to interpolate displacemenis within an element are
also used to interpolate recovered stresses.

The objective of this study is to demonstrate the applicability of ordinary Kriging
interpolation(OK) to the p—adaptivity of the finite element analysis of siress singularity problem
employing the modified S.P.R. method that can recover stresses by using the weighted
least—square method. To verify this method, the limit value technique has been proposed as a
different error estimator that is based on the exact strain energy when the number of degrees of
freedom approaches infinite.

2. Ordinary Kriging Interpolation

The principal tool of most geostatistical analyses is the variogram. Thus the spatial
continuity of the data can be examined on the basis of the variogram analysis. The

variogram 27(") s defined as :

27(h) = Var|Z(x+ h) - Z(x)] (1)

The 7 is often called a semi—variogram that can be defined as half the expected
squared difference between paired random functions separated by the distance and
direction vector or Jaglor separation distance) h such as :

R ’
7 =5, 2 lee) ~ 23+ )] @

where M is equal to the number of pairs of values in which the separation distance is
equal to h. The increase of the separation distance cannot cause the semi—variogram
increase. The separation distance that causes the semi—variogram reach plateau is
called range a. Ordinary Kriging(OK) has been used extensively as an estimation technique
because of its s;mphmty and for its reliable estimates. This technique allows estimation of an
unsampled location based on neighbor data values(Lloyd & Atkinson, 2001):

(x,)= El}q'z(xf) 3)

where Mand Z(z;)are the weights assigned to the available observations and neighbor data
close to the unsampled location (z,). respectively. With OK the weights sum to one to ensure
that the estimate is unbiased :
n
1- izzl;t,. =0 | W
The Kriging variance . associated to an OK estimate is called the minimum variance unbiased
‘estimator (MVUE) or best linear unbiased estimator (BLUE) since the constraint condition defined
in Eq.(4) should be applied to minimize the variance of estimate errors. Thus the mathematical
equation can be formulated by Eq.(5).

Minimize

ol =0% =2 ol + KA ol I
oK ,Za e 121 ]Z:l v where i~ Cov(Zi.Z;) (5)
. . 1-Y 4 =0

with a constramnt =1
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Fig. 1 Type of theoretical semi-variogram models
The Eq.(5) can be rewritten by Lagrange multiplier method.

n

42,07 +2y[1— 2"3/1,}
=1 i=l

2 n 2 n
o =2 Lol +
Ly dopeon A ) = 22 HCa+ L ©)
‘where L(A;, Ay A,;p) is Lagrange objective function, and g is Lagrange multiplier. To
minimize the objective function can be carried out by finding the partial derivatives with respect
to A; and g such that:

L o 202 +23 4ok -2 =0, 1=12,..n

o i=1

aL "

Z.9 1-}:4}:0 .
o I: a @

The Eq.(7) can be rearranged by Eq.(8), and we finally obtain the matrix equation based on
OK estimates where o”; represents the estimation variance between the expected value Z(x,) at

the unsampled location (z,) and known values Z(x;) at the sampled location (z,).

n
Z;”io-i? —p=0y4, I=12,..n

i=l

A=l (8)

3. A Posteriori Error Estimate for p-Refinement

It is inevitable to slightly modify the existing S.P.R. technique proposed by Z/Z(Zienkiewicz &
Zhu, 1992) because the number of sampling Gauss points in each element is different according
to non—uniform or selective p—distribution. Also, shape functions for a hierarchical finite element
are different from those for conventional finite elements. The elemental error measure in the Z/Z
approach is quantified by computing the strain energy contained in the difference between the
discontinuous p—version finite element solution at the sampling Gauss point and the smoothed
solution. The energy norm of the error in the displacement field proposed by Z/Z is given by:
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kA=l -2 o1 - 27)) ®

where

Z*: smoothed stress field by projection

ZF: computed stress at Gauss points by non—uniform p—refinement
[D] : constitutive matrix

£2 © mesh domain

Thus the error in terms of stresses may be computed either exactly using the exact stress
field: Z, or estimated using Z*.
eo_:ZA—szZ‘—Zp ¢1)]

in which the smoothed continuous stress field, Z*, is derived the discontinuous finite element
stresses Z°. The estimated siress at the unsampled points can be computed by linear
combination of stresses at the sampling—points(Gauss points) such as :

k
2, v =Y A7 (x,
(x,, ¥o) }Z=l GZi(x,y) (1D

where k& is number of Gauss points, and A, Zj(z,y)represent weight factors. Respectively. The
energy norm of the displacement field itself, | 7 | . may also be expressed in terms of stresses.

- (1Y ior 27 aw) | .

Thus the relative percentage error can be defined as:

_[ e, II? JW %) 03
P ENEE ’ ‘

In the presence of singularities, the asymptotic convergence behavior of the p—version of the
tinite element method permits a close estimate of the exact strain energy by extrapolation that is
called the lIimit value, and hence we can predict the error in the energy norm on the finite
clement mesh cmployed. For a two—dimensional problem, under the assumption that the crror in
the energy norm has entered the asymptotic range where U,, and U, are the strain energy
(ie. the degree of freedom is sufficiently high), the rate of convergence for the p—version of
FEM can be derived by the inverse theorem as:

Ve =Uy | kN (14

where U, and U}, are the exact strain energy estimated by the limit value and the approximate
strain energy by FEM, « is the strength of singularity, N and k are the degrees of freedom for
the polynomial order p and a constant which depends on the mesh, respectively. There are three
unknowns U, k. and a in Eq. (12). By performing three successive extension processes, p—2,
p—1, and p. which are in the asymptotic range. we have three equations for computing the
unknowns, Cancelling « and k in Eq. (14), the following extrapolation equation can be derived

as:
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- UE-U N,
Log —*——*~ Log—~
Ur-u,, N,
uL-uU_ _, N
Log—= U [og— 22 -
UL-U,, N, (15)

where U,, U,.., and U, are the strain energies when the polynomial orders are p, p—1,
and p—2, and U’fx represents the limit value in terms of estimated exact strain energy. N,, ¥, .
and N, , are the number of degrees of freedom for each analysis. Thus the energy norm of the
error in the displacement field by using limit value is given by:

UL -U 172
lel, {—}
UL (16)

Similar to the relative percentage error based on S.P.R. method, the new error indicator can be
defined in Eq. (17) and also can be used to verify the performance of the modified S.PR.

method.
uL-U,7"
g= Ui (%)

4. Numerical Example

The geometry of a centrally cracked panel(CCP) under simple iensile loading is shown in Fig.
2. Due to symmetry, a quarter of panel is modeled by the p—adaptive mesh refinement. A
quarter of the panel with height 2h, width 2b, and crack length 2a is discretized into eight

elements where h/b=2, 0=1.0 , E=2x10° , and v =0.3. The final adaptive mesh is
produced automatically by the computer program developed for this study as shown in Fig. 3 and
Fig. 4. The LSM(east square method) and Ordinary Kriging(OK) are used to calculate the
estimated exact solution Z* (or smoothed stress field by projection), respectively. It is noted
that the distribution of p—levels by LSM based adaptive mesh in the vicinity of crack tip is much
higher than those by p—adaptive mesh associated with Ordinary Kriging technique.

However, we can obtain similar level of accuracy by OK based adaptive mesh that may be
compared with not only LSM based adaptive mesh but also other empirical solutions by Irwin,
efc. The non—dimensional stress intensity factors are plotted as a/bratio varies from 0.1 to 0.9.
Also, the required number of iterations o determine final p—adaptive mesh are 9 for LSM based
adaptive mesh and 4 for OK based adaptive mesh, respectively. The number of degree of
freedoms(NDF) is 215 for LSM approach, on the other hand only 135 for OK technique. Thus it
may be concluded that the solution of non—dimensional stress intensity factor is converged from
NDF=135 shown in Table 2 and we can determine quickly the final adaptive mesh by OK
technique comparing with LSM approach.
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Fig

. 2 Geometric configuration of
a centrally cracked panel
and finite element model.

P=2 =2 p=2 =2
p=p p=2 P=3 P=3
P=6 p=6 P=5 P=5
P=8 p=7 p=5 P=4

Fig. 3 Final adaptive
mesh a/b=0.5 {LSM)

Fig. 4 Final adaptive
mesh a/b=0.5 (OK)

Table 1 Non—dimensional stress intensity factors of CCP with respect to a/b ratio.

. . p—adaptive p—adaptive =28
ah Irwin Brown Feddersen Pixon mesh(LSM) mesh(OK) (all meshes)
0.1 1.004 1.011 1.006 1.005 0.950 0.931 0.977
0.2 1.017 1.026 1.025 1.0211 0.994 0.984 1.001
0.3 1.040 1.054 1.059 1.048 1.033 1.007 1.035
0.4 1.075 1.103 1112 1.091 1.086 1.054 1.085
0.5 1.128 1.183 1.189 1.155 1.162 1.123 1.158
0.6 1.208 1.303 1.304 1.250 1.274 1.251 1.267
0.7 1.336 1.473 1.484 1.400 1.448 1.420 1.437
0.8 1.565 1.670 1.799 1.667 1.748 1.700 1.729
0.9 2.114 1.994 2.528 2.294 2.420 2.331 2.384

2.8
-4 Trwin

2.4 -8~ Brown
~&~ Feddersen

2 -@- Dixon
= - pAdaptivity(KG)

1.6 -4~ p-Adaptivity(L.SM)
~£y- p=8(all meshes)

1.2

0.8 ! : .

0 0.2 0.4 0.6 1
a/b

Fig. 4 Comparison of non—dimensional stress intensity factors

as a/b ratio varies from 0.1 to 0.9.
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Table 2 The relative percentage error based on S.P.R. method when a/b=0.5.

) Least Square Method Ordinary Kriging
No. of lteration NDF o) NDF o)
1 23 10.77 23 11.99
2 49 13.34 49 9.58
3 66 11.35 79 5.66
4 83 10.01 104 4.06
5 113 10.73 135 2.73
6 140 10.92 - -
7 168 10.39 - -
8 203 10.10 - -
9 215 9.92 - -

As sown in Table 3 and Table 4, the required numbers of degree of freedom to
produce the LSM based p-adaptive mesh are between ten and eleven iterations, on
the other hand, the OK based p-adaptive mesh requires only five and six iterations to
determine the final adaptive mesh. This means that the accuracy of non—dimensional
stress intensity factors is virtually unchanged after the number of iteration is six in
case of the L.SM based approach.

To clarify the rclative crrors in Table 2 Table 5, the results by the conventional
S.P.R. method are compared with those by the limit value approach. As mentioned
before. the first method is based on the errors of energy norm between stresses
calculated at Gauss points by FEM analysis and those by the smoothed stress
field(estimated exact stress function) using projection technique such as LSM or OK
method. However, the second method is associated with same stresses calculated at
Gauss points by FEM analysis and the exact stress function by limit value approach
proposed in this study. When the relative percentage error{ ng(%) by LSM when NDF=140
is 10.92%, but that by OK method vyields 2.73% when NDF=135 shown in Table 2. The relative
percentage errors(((%) based on Limit Value method when same NDF and a/b are used are
16.04% and 14.56%, respectively. It may be alsc noted that the relative percentage error based
on Limit Value method is gradually decreased as NDF and number of iteration are increased.
Thus it can be concluded that the error indicator by the conventional S.P.R. method is merely
used to check whether the mesh should be refined more or the polynomial order of element
should be increased.

Table 3 NDF with respect of a/b ratio by LSM based p-adaptive mesh.

. a/b
No. of terlion 34 05 06 07 08 09
1 5523 23 23 23 23 23 23 23
2 9% 34 34 49 49 54 62 62 62
3 43 55 55 66 66 79 79 73 79
4 62 73 78 78 83 104 104 96 107
5 82 86 94 107 113 123 130 130 140
6 o1 119 127 116 140 150 159 159 169
7 115 138 146 145 168 174 104 170 191
8 137 169 172 168 203 196 213 194 217
9 177 194 182 185 215 217 226 231 223
10 104 198 - 191 —- 228 231  —- -
11 210 - -— - — - —_— — —-—

21. Finite Element Techniques 1_855



" Table 4 NDF with respect of a/b ratio by OK based p—adaptive mesh.

a/b
0.1 02 03 04 05 086 0.7 08 09
23 23 23 23 23 23 23 23 23

No. of iteration

1
2 28 35 44 49 49 54 54 54 62
3 40 52 61 67 79 74 87 65 87
4 66 66 75 84 104 103 97 78 130
5 86 - 95 - 102 91 135 110 104 98 137
6 - 118 111 - 141 113 107 146
7 —_— p— p— —_ . — —_— — —
8 — — — p— —_ p— - — —
Table 5 The relative percentage error based on Limit Value method when a/6=0.5.
No. of Least Square Method Ordinary Kriging
Iteration NDF (%) NDF ¢(%)

1 23 31.83 23 30.75

2 49 22.29. 49 20.65

3 66 20.94 79 19.17

4 83 18.37 104 17.06

5 113 16.93 135 14.56

6 140 16.04 - -

7 168 15.44 - -

8 203 13.79 - -

9 215 13.78 - -

5. Conclusions

The new p—adaptive finite element model with Ordinary Kriging technique is proposed in this
study. This approach shows superior performance to the existing SPR method by Z/Z using
LSM(least square method) to estimated smoothed stress field(estimated exact solution by FEM)
by projection. This proposed model is very suitable for stress singularity problems like fracture
mechanics since the high weight factor is used near the crack tip to interpolate the stress values
at the Gauss points that is calculated by variogram model and Kriging interpolation technique.
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