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ON THE TANGENT SPACE OF A WEIGHTED
HOMOGENEOUS PLANE CURVE SINGULARITY

Mario Morán Cañón and Julien Sebag

Abstract. Let k be a field of characteristic 0. Let C = Spec(k[x, y]/〈f〉)
be a weighted homogeneous plane curve singularity with tangent space
πC : TC/k → C . In this article, we study, from a computational point of
view, the Zariski closure G (C ) of the set of the 1-jets on C which define
formal solutions (in F [[t]]2 for field extensions F of k) of the equation
f = 0. We produce Groebner bases of the ideal N1(C ) defining G (C ) as
a reduced closed subscheme of TC/k and obtain applications in terms of
logarithmic differential operators (in the plane) along C .

1. Introduction

1.1. Let k be a field of characteristic zero. Let V be a k-variety, i.e., a k-
scheme of finite type. One usually attaches to V its tangent space πV : TV/k :=
Spec(Sym(Ω1

V/k)) → V and its arc scheme L∞(V ) which is canonically en-
dowed with a morphism of k-schemes π∞1 : L∞(V ) → TV/k. We set G (V ) :=
π∞1 (L∞(V )). (This closed subset is endowed with its reduced structure of
closed subscheme of TV/k.) If V is assumed to be integral, it is not hard to
prove that G (V ) is an irreducible component of TV/k that we call the general
component of TV/k by analogy with the theory of differential equations (see
Subsection 3.2). If V ↪→ An

k is also assumed to be affine, we denote by N1(V )
the unique ideal of O(TV/k) such that O(G (V )) = O(TV/k)/N1(V ). (We do
not denote differently the ideal N1(V ) and its preimage in the ring O(An

k ).)

1.2. The general component of TV/k plays a role in various contexts. As-
sume, for simplicity, that the considered varieties are affine. First of all, we
observe that the elements of the ideal N1(V ) define the nilpotent functions on
the arc scheme L∞(V ) associated with V which live on L1(V ) (see Subsec-
tion 3.1 for details and formula (3.3)). Furthermore, in [13], if C is a plane
curve defined by the datum of an irreducible polynomial f ∈ k[x, y], the second
author has shown that every homogeneous element P of N1(C ), of degree d,
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defines a differential operator of the plane DP such that DP (fd) ∈ 〈f〉, and
conversely (see also [12] for a generalization to reduced polynomials). In this
direction, by [12], one can also observe that the principal symbols of the Bern-
stein operators of f (i.e., the differential operators D of the plane such that
Dfs+1 = b(s)fs with b ∈ Q[s]) belong to N1(C ). In the end, the existence of
nontrivial nilpotent functions on TV/k has been used in the context of vertex
algebras (see [1]).

1.3. Thus, obtaining a description and a complete understanding of N1(V )
for arbitrary varieties V , in particular from the computational point of view,
appears as a challenging and tricky question. In the present article, we provide
systems of generators and Groebner bases of the ideal N1(C ) in the case of
an affine plane curve singularity defined by the datum of a homogeneous or
weighted homogeneous polynomial (see Sections 6 and 7). Our key ingredient
is differential algebra as developed by Ritt and Kolchin that we reinterpret in
our context (see Sections 3 and 5). Let us stress that, as a by-product, our
main results provide the following particular case:

Theorem. Let k be a field of characteristic zero. Let (r, s) ∈ N2 be a pair
of coprime integers with r > s ≥ 2. Let f = xr − ys ∈ k[x, y]. Let C be the
associated affine plane k-curve.

(1) The family of polynomials D̃−1 := sy1x0 − ry0x1, D̃i := siys−i0 yi1 −
rixr−i0 xi1, for every integer i ∈ {0, . . . , s}, is a Groebner basis of the
ideal N1(C ).

(2) For every differential operator D =
∑
i+j≤d ai,j(x, y)∂ix∂jy on A2

k, with
order d, such that D(fd) ∈ 〈f〉, its principal symbol

σ(D) =
∑
i+j=d

ai,j(x, y)∂ix∂jy

is a combination (in the Weyl algebra) of the following differential op-
erators

(1.1)


f,
sx∂x − ry∂y,
siys−i∂ix + (−1)irixr−i∂iy ∀i ∈ {1, . . . , s}.

(3) If PB =
∑
i Pis

i is a Bernstein operator of f (i.e., there exists a poly-
nomial b ∈ Q[s] such that PB(fs+1) = b(s)fs), with order d, then each
Pi of maximal order d in the expression of PB is a combination (in the
Weyl algebra) of the differential operators (1.1).

Proof. Assertion (1) is a particular case of Theorem 7.6. Assertions (2) and
(3) follow from assertion (1) and the main results of [13] and [12]. �

Acknowledgements. We would like to thank François Boulier, David Bour-
qui, François Lemaire and Adrien Poteaux for interesting discussions.
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2. Conventions, notation, recollection

2.1. In this article, the base field k is assumed to be of characteristic zero.
Let n ∈ N. For every m ∈ N ∪ {∞}, we denote by Am the polynomial ring
k[ti,j ; i ∈ {1, . . . , n}, j ∈ {0, . . . ,m}] with the convention {0, . . . ,∞} = N.
For every m ∈ N ∪ {∞}, a polynomial f ∈ Am (resp. an ideal I of Am) is
called reduced (resp. radical or perfect) if f has no multiple factor (resp. if
Rad(I) :=

√
I = I). We denote by B0 (resp. B1) the polynomial ring k[x0, y0]

(resp. k[x0, y0, x1, y1]). If R is a ring, H ∈ R, and J an ideal of R, we denote by
(J : H∞) the saturation of H in J , i.e., the ideal of R formed by the elements
y such that there exists an integer M ∈ N with yHM ∈ J . We denote the
regular locus (resp. singular locus) of V by Reg(V ) (resp. Sing(V )). If V is
k-variety, we always assume that its singular locus Sing(V ) is endowed with its
reduced structure of subscheme. In the present article, with a slight abuse of
notation, we will not make any difference between the ideal N1(V ) of the ring
O(TV/k) and its unique preimage in the ring A1.

2.2. On the polynomial ring A1 (or B1), we will use various graded struc-
tures associated with various degree functions.

(1) The total degree deg := degtot of the polynomial ring A1; for this
function, the monomial M = ta1

1,0 · · · t
an
n,0t

b1
1,1 · · · t

bn
n,1 of A1 is of degree

degtot(M) =
∑n
i=1 ai + bi;

(2) The partial degree deg0 of the polynomial ring A1, where every poly-
nomial is seen as a polynomial in the variables ti,0 with coefficients in
the ring k[ti,1; i ∈ {1, . . . , n}]; for this function, the monomial M is of
degree deg0(M) =

∑n
i=1 ai

(3) The partial degree deg1 of the polynomial ring A1, where every polyno-
mial is seen as a polynomial in the variables ti,1 with coefficients in the
ring k[ti,0; i ∈ {1, . . . , n}]; for this function, the monomial M is of de-
gree deg1(M) =

∑n
i=1 bi. For this grading, a homogeneous polynomial

P is said to be 1-homogeneous of 1-degree deg1(P ).
We say that a polynomial P ∈ A1 is bi-homogeneous if the polynomial P is
simultaneously a homogeneous polynomial for the graded structure induced by
(2) and that induced by (3). Equivalently, the polynomial P is bi-homogeneous
if and only if there exist two integers e, d such that one has deg0(T ) = e and
deg1(T ) = d for every nonzero term T of P . The pair (d, e) is the bi-degree
of P . Let us stress that, in particular, the polynomial P then is homogeneous
for the graded structure induced by (1) (but, obviously, the converse does not
hold).

2.3. Let k be a field of characteristic zero. Let f ∈ B0 be a polynomial. We
say that f is weighted homogeneous of weight (w1, w2, w) if we have the formula

f(tw1x0, t
w2y0) = twf(x0, y0)
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in the polynomial ring B0[t]. We recall the following usual characterizations of
weighted homogeneous polynomials.

Proposition 2.4. Let k be a field of characteristic zero. Let f ∈ B0 \ k be a
reduced polynomial. The following assertions are equivalent:

(1) The polynomial f is weighted homogeneous of weight (w1, w2, w);
(2) Every monomial xi0y

j
0 of f satisfies iw1 + jw2 = w;

We assume that the field k is algebraically closed. The former assertions are
equivalent to the following one:

(3) There exist a k-automorphism σ of the ring B0, an integer n ≥ 1, a
pair of coprime integers (r, s), with r ≥ s, and λ1, . . . , λn ∈ k× such
that σ(f) = xε0y

ε′

0
∏n
i=1 x

r
0 − λiys0 with ε, ε′ ∈ {0, 1}.

Proof. Equivalence (1) ⇔ (2) is clear. Equivalence (2) ⇔ (3) is proved in
[9, Lemmas 1,2,3]. �

3. Recollection of arc scheme and differential algebra

In this section, we provide some recollection of differential algebra in relation
with arc scheme; basics on arc scheme are recalled. Direct consequences are
also established (see Lemmas 3.4 and 3.7).

3.1. For every integer m ∈ N, with every k-variety V , we may associate its
jet scheme Lm(V ) of level m defined by the existence of the natural bijection,
for every k-scheme S, bi-functorial in S and V ,
(3.1) HomSchk

(S,Lm(V )) ∼= HomSchk
(S ⊗k k[[T ]]/〈Tm+1〉, V ).

One attaches to V its arc scheme L∞(V ) by the bi-functorial property (in
S, V ):

HomSchk
(S,L∞(V )) ∼= lim−→

m

HomSchk
(S ⊗k k[[T ]]/〈Tm+1〉, V ).

Thus, one has L∞(V ) ∼= lim←−
m

(Lm(V )).

3.2. In this article, we focus on the case where m = 1. Because of formula
(3.1) and the universal property of symmetric algebra, we easily conclude that
L1(V ) ∼= Spec(Sym(Ω1

V/k)), i.e., it is the tangent space TV/k of V . One has
the following decomposition:

(3.2) (TV/k)red = π−1
V (Reg(V ))

⋃
π−1
V (Sing(V )).

By [6], one knows that the open subscheme L∞(V ) \L∞(Sing(V )) is dense in
L∞(V ). In this way, if π∞1 : L∞(V )→ L1(V ) is the canonical morphism and
if V is assumed to be irreducible, we easily observe that

(3.3) G (V ) := π∞1 (L∞(V )) = π−1
V (Reg(V ))
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since the closed subset π∞1 (L∞(V )) obviously contains the open subset
π−1
V (Reg(V )) = L1(Reg(V )) and π−1

V (Reg(V )) also is an irreducible component
of TV/k. If F ⊃ k is a field extension, the F -points of G (V ) hence correspond
to elements of TV/k(F ), i.e., F-jets of level 1, which are Zariski closed to 1-jets
with regular base-point.

3.3. Let R be a k-algebra. We denote by Derk(R) the R-module formed by
the k-derivations on R, i.e., the k-linear maps R→ R which satisfy the Leibniz
rule. We endow the k-algebra A∞ with the k-derivation ∆ defined by ∆(ti,j) =
ti,j+1, for every integer i ∈ {1, . . . , n} and every integer j ∈ N. The resulting
differential k-algebra is denoted by k{t1, . . . , tn} and called the differential poly-
nomial ring. The injective morphism of k-algebras k[t1, . . . , tn]→ k{t1, . . . , tn},
defined by ti 7→ ti,0, identifies the polynomial ring k[t1, . . . , tn] in k{t1, . . . , tn}
with A0 and gives rise to a structure of k[t1, . . . , tn]-algebra on k{t1, . . . , tn}.
In particular, by a slight abuse of notation, we will not make any difference
between the rings k[t1, . . . , tn] and A0. For every subset S ⊂ k{t1, . . . , tn},
we denote by [S] the differential ideal generated by S in the differential ring
k{t1, . . . , tn} and by {S} the radical of the ideal [S]. As usually, if S only con-
tains the polynomial P ∈ k{t1, . . . , tn}, the notation {P} refers to this radical
differential ideal associated with S.

Let us mention the following useful and classical statement (which is, e.g.,
a direct consequence of [7, I/§9/Lemma 6] in the particular case of a single
equation):

Lemma 3.4. Let k be a field of characteristic zero. Let I be a prime ideal of
A0. Let P ∈ A0. Then, the polynomial P belongs to the ideal {I} if and only
if it belongs to the ideal I.

If I is an ideal of A0, we denote by 〈I,∆(I)〉 the ideal of A1 generated by the
polynomials in I (seen in A1) and the polynomials ∆(f) for all the polynomials
f ∈ I.

3.5. If V is an affine k-variety with O(V ) = A0/I, one verifies that

Lm(V ) ∼= Spec(Am/〈∆(i)(f); f ∈ I, i ∈ {0, . . . ,m}〉)

for every integer m ∈ N, and that L∞(V ) ∼= Spec(A∞/[I]).

3.6. Let I be a reduced ideal of the ring A0. Let I = ∩rj=1Ij be a prime
decomposition of I, i.e., the ideals Ij are prime for every integer j ∈ {1, . . . , r}
(and homogeneous if the ideal I is homogeneous). By the Kolchin irreducibility
theorem (see [7, Ch. IV/S17/Proposition 10]), one knows that the reduced
differential ideal {Ij} is prime, for every integer j ∈ {1, . . . , r} and

(3.4) {I} = {I1} ∩ · · · ∩ {Ir}.
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Density statements in arc scheme (e.g., [10, Corollary 3.7]) provide presenta-
tions of the ideal {I} (when the ideal I is assumed to be prime) which are very
useful from a computational point of view. The following general formulation
can be deduced from [7, Ch. IV/S17/Proposition 10] and the more general
statement in [3, Proposition 3.3] (which is valid in arbitrary characteristic); we
provide a direct proof for the convenience of the reader.

Lemma 3.7. Let I be a prime ideal of the ring A0. For every H ∈ A0 such
that Sing(Spec(A0/I)) ⊂ V (H) and H 6∈ I, then we have

(3.5) {I} = ([I] : H∞).

This formula, in the special case of systems of algebraic equations, can be
linked to corresponding formulas of Lazard and to the Rosenfeld lemma (see
[7, Ch. IV/§9/Lemma 2]) in the context of differential algebra. The proof of
the Kolchin irreducibility theorem (see [7, Ch. IV/S17/Proposition 10]) in par-
ticular explains how to use these results in the differential setting for obtaining
statements analogous to Lemma 3.7 in the algebraic framework. As a direct
illustration, let us stress that, for every irreducible polynomial f ∈ A0, [7, Ch.
IV/§9/Lemma 2] directly implies that

{f} = ([f ] : ∂(f)∞)

for every nonzero partial derivative ∂(f) of f . This formula also is a particular
form of Lemma 3.7; and the way we will use Lemma 3.7 in the present article.

Proof. Let P ∈ ([I] : H∞). There exists an integer N such that HNP ∈ {I}.
By [7, Ch. IV/S17/Proposition 10] and Lemma 3.4, we conclude that P ∈
{I}. Let D(H) = Spec(A0) \ V (H). Furthermore, we deduce from the very
definitions, that L∞(D(H)) ⊂ V (([I] : H∞)), which implies, thanks to the
irreducibility of L∞(Spec(A0/I)) (by [7, Ch. IV/S17/Proposition 10]), that
V (([I] : H∞)) = L∞(Spec(A0/I))red; hence, the radical of the ideal ([I] : H∞)
coincides with the ideal {I}. In this end, we note that L∞(D(H)) is an open
subscheme of L∞(Reg(Spec(A0/I)) because of the choice of H. By [11, Lemma
3.4.2], we conclude that the localization (A∞/[I])H by H of the ring A∞/[I] is
a domain. The injective morphism

A∞/([I] : H∞) �
� // (A∞/[I])H

then implies that the ideal ([I] : H∞) is prime, hence reduced, which concludes
the proof. �

3.8. If V is assumed to be affine and integral with O(V ) = A0/I, by formula
3.3 and Lemma 3.7, we have

(3.6) N1(V ) := ({I} ∩A1)/〈I,∆(I)〉 = (([I] : H∞) ∩A1)/〈I,∆(I)〉.
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Besides, following the previous ideas, we observe that 〈I,∆(I)〉 ⊂ (〈I,∆(I)〉 :
H∞) ⊂ N1(V ) and that the injective morphism

A1/(〈I,∆(I)〉 : H∞) �
� // (A1/〈I,∆(I)〉)H

implies that the ideal (〈I,∆(I)〉 : H∞) is prime. We recall that we do not make
any difference between the ideal N1(V ) of the ring O(TV/k) and its unique
preimage in the ring A1, which contains the ideal 〈I,∆(I)〉.Thus, we have
(〈I,∆(I)〉 : H∞) = N1(V ).

3.9. Let us summarize the previous remarks as the following observation:

Observation 3.10. Let k be a field of characteristic zero. Let m ∈ N∗. Let
I be a reduced ideal of A0 with (Ij)j∈{1,...,m} as prime components. We set
V = Spec(A0/I) and Vj = Spec(A0/Ij) for every integer j ∈ {1, . . . ,m}. Let
P ∈ A1. The following assertions are equivalent:

(1) The polynomial P belongs to the ideal N1(V );
(2) The polynomial P belongs to the ideal ∩mj=1({Ij} ∩A1);
(3) For every integer j ∈ {1, . . . ,m}, the polynomial P belongs to the ideal
N1(Vj) = ([Ij ] : H∞j ) = (〈Ij ,∆(Ij)〉 : H∞j ) for every Hj satisfying the
assumption of Lemma 3.7.11.

In particular, if there exists an irreducible polynomial f ∈ A0 (resp. B0) such
that I = 〈f〉, then we have N1(V ) = (〈f,∆(f)〉 : ∂(f)∞) for every nonzero
partial derivative ∂(f) of f .

Remark 3.11. By analogous arguments, Observation 3.10 can be extended for
m-jet scheme of any level m ≥ 1.

Remark 3.12. By [5], it is easy to deduce an algorithm to compute Groebner
bases of the ideal N1(V ). (See [8] or [4].)

3.13. Let V be an affine k-variety with O(V ) = A0/I. Since, for every
generator g of I, the polynomial ∆(g) is homogeneous, with deg1(∆(g)) = 1,
for the graded structure (3) in Subsection 2.2, we conclude from formula (3.6)
that the ideal N1(V ) (in the ring A1) is homogeneous. Besides, if the ideal I is
assumed to be homogeneous (in the ring A0), the same argument implies that
the ideal N1(V ) (in the ring A1) is bi-homogeneous.

3.14. Let k′ be an algebraic closure of the field k. Let I be a prime ideal of
A0. We observe that the ideal {I}⊗k k′ of the ring A∞⊗k k′ coincides with the
radical of the differential ideal generated by the ideal I in the differential ring
A′∞ := A∞ ⊗k k′. Besides, for every polynomial P ∈ A′1 := A1 ⊗k k′, one can
check directly from the very definition that, if (ei)i∈I is a basis of the k-vector
space k′, then the polynomial P =

∑
i∈I Piei (with Pi ∈ A0 for every i ∈ I)

belongs to ({I} ⊗k k′) ∩A′1 if and only if, for every i ∈ I, we have Pi ∈ {I}.
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4. Technical results on polynomials

In this section, we establish technical results (see Propositions 4.4 and 4.6)
which will be useful for our description of the general component attached to
an affine plane curve defined by the datum of a homogeneous or weighted-
homogeneous polynomial, but which are sufficiently general to be considered
independently. In this section we fix the lexicographic order on B1 associated
with y1 > y0 > x1 > x0.

4.1. On the set N4, we introduce the following equivalence relation: for
every pair of tuples (a, b) ∈ N4 ×N4, we say that a is equivalent to b if there
exists an integer s ∈ Z such that

b1 = a1 − s
b2 = a2 + s

b3 = a3 + s

b4 = a4 − s.

In this case, we write a ∼ b.

Lemma 4.2. Let a, b ∈ N4. The following assertions are equivalent:
(1) We have a ∼ b;
(2) The 4-tuples a, b verify the following conditions:

a1 + a3 = b1 + b3

a2 + a4 = b2 + b4

a1 + a2 = b1 + b2

a3 + a4 = b3 + b4.

Proof. We only have to prove (2) ⇒ (1). Let us set s := a1 − b1. We observe
from equations in system (2) that

s = b2 − a2

= b3 − a3

= a4 − b4.

Thus, we deduce that b1 = a1− s, b4 = a4− s, b2 = a2 + s and b3 = a3 + s. �

4.3. Let Γ be a system of representatives of ∼ in N4. For every poly-
nomial P ∈ B1, there exist bi-homogeneous polynomials P1, . . . , Pm ∈ B1
with P =

∑m
i=1 Pi and which satisfy the following property: for every integer

i ∈ {1, . . . ,m}, one can find a unique αi ∈ Γ such that

(4.1) Pi =
∑

a∈N4,a∼αi∈Γ

λay
a1
1 ya2

0 xa3
1 xa4

0 .
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If we assume that the polynomial P is bi-homogeneous of bi-degree (d, e),
we observe, thanks to Lemma 4.2, that, for every integer i ∈ {1, . . . ,m}, there
exist an integer `i ≤ d+ e such that:

(4.2) Pi =
∑

(a1,a2)∈N2

a1+a2=`i

λ(a1,a2,d−a1,e−a2)y
a1
1 ya2

0 xd−a1
1 xe−a2

0 .

(Let us stress that, because of the assumption on P , we have a3 = d− a1 and
a4 = e− a2 in formula (4.1).)

Proposition 4.4. Let P ∈ B1 be a polynomial. We set

P =
∑
a∈N4

λay
a1
1 ya2

0 xa3
1 xa4

0 .

Let r, s ∈ N \ {0}. The following assertions are equivalent:
(1) The polynomial sy1x0 − ry0x1 divides the polynomial P .
(2) We have the formula

∑
b∈N4,b∼a

λbr
b1sb3 = 0 for every tuple a ∈ N4.

If we assume that the polynomial P is bi-homogeneous of bi-degree (d, e), then
the former assertions are equivalent to the following one:

(3) For every integer `, we have the formula∑
(a1,a2)∈N2

a1+a2=`

λ(a1,a2,d−a1,e−`+a1)r
a1sd−a1 = 0.

Proof. Assertion (3) is equivalent to assertion (2) by Observation (4.2).
(1) ⇒ (2) We set G = sy1x0 − ry0x1. Let Q ∈ B1 be a polynomial. Each

term M = µmy
m1
1 ym2

0 xm3
1 xm4

0 of Q (with µm ∈ k) provides two monomials
in the expression of QG, whose degrees belong to the same equivalence class
by ∼, namely sµmy

m1+1
1 ym2

0 xm3
1 xm4+1

0 and −rµmym1
1 ym2+1

0 xm3+1
1 xm4

0 . One
checks that their sum satisfies the required property since

(4.3)
sµmr

m1+1sm3 − rµmrm1sm3+1 = µmr
m1sm3(rs− rs)

= 0.
(2) ⇒ (1) We may assume that

P =
∑

a∈N4,a∼α∈Γ

λay
a1
1 ya2

0 xa3
1 xa4

0

by Subsection 4.3. By assumption, we have∑
a∈N4,a∼α∈Γ

λar
a1sa3 = 0.

We have to prove that G divides the polynomial P . Let us set
lm(P ) = λãy

ã1
1 yã2

0 xã3
1 xã4

0

with ã ∼ α. Various cases occur:
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◦ If ã1 = 0, then λa = 0 whenever a1 > 0 (otherwise it would contradict
the fact that the tuple ã corresponds to lm(P )). But, by the definition of the
relation ∼, there is no tuple a ∼ ã with a1 = ã1 different from ã itself. Thus
P = lm(P ) and, by assumption, we have λã = 0; hence, P = 0.
◦ We assume that ã4 = 0. By the definition of relation ∼, every tuple a

equivalent to ã must verify a1 ≥ ã1, since a1 = ã1 + a4. If a1 > ã1, we deduce
that λa = 0 because of the choice of ã. Thus, we have P = lm(P ), and we
conclude as formerly.
◦ We assume that ã1, ã4 > 0. Then the polynomial

P (1) := P − (λã
s
yã1−1

1 yã2
0 xã3

1 xã4−1
0 )G

still verifies
∑
a∈N4,a∼α∈Γ λar

a1sa3 = 0 (by Observation (4.3) applied here),
and we also have lt(P (1)) < lt(P ). Using the previous cases, we observe that
this construction can be iterated. In this way, we construct P (2) such that
lt(P (2)) < lt(P (1)) and G divides P (2)−P (1). After a finite number t of steps
(at most min{ã1, ã4}), we will obtain P (t) = 0, which proves the property and
concludes the proof. �

4.5. Let r, s ∈ N∗. We introduce the morphism of B0-algebras

(4.4) ẽv1 : B1 → B0

defined by x1 7→ sx0 and y1 7→ ry0.

Proposition 4.6. Let P ∈ B1 be a 1-homogeneous polynomial of 1-degree d.
Let r, s ∈ N \ {0}. The following assertions are equivalent:

(1) The polynomial P is divisible by sy1x0 − ry0x1.
(2) We have ẽv1(P ) = 0.

Proof. We only have to prove (2) ⇒ (1). We set

P =
∑
a∈N4

a1+a3=d

λay
a1
1 ya2

0 xa3
1 xa4

0 .

By assumption, we have

(4.5)

0 = ẽv1(P )

=
∑
a∈N4

a1+a3=d

λar
a1sa3ya1+a2

0 xa3+a4
0

Let (`,m) ∈ N2. If a3 + a4 = m and a1 + a2 = `, we conclude that a2 +
a4 = ` − a1 + m + a1 − d = ` + m − d. Thus, the sum P(`,m) of the terms
T = λay

a1
1 ya2

0 xa3
1 xa4

0 of P with a3+a4 = m and a1+a2 = ` is a bi-homogeneous
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polynomial of bi-degree (d, ` + m − d). Formula (4.5) implies that, for every
pair of integers (`,m) ∈ N2, we have∑

(a1,a2)∈N2

a1+a2=`
d+a4=m+a1

λ(a1,a2,d−a1,`+m−d−a2)r
a1sd−a1 = 0.

We deduce from Proposition 4.4 that each polynomial P(`,m) is divisible by
sy1x0 − ry0x1, which concludes the proof. �

5. Differential properties of homogeneous polynomials

Let k be a field of characteristic zero. In this section, we establish various tech-
nical results which will be used in the next sections. We exhibit in particular
an additional differential structure on the ring A1 (see Theorem 5.4).

5.1. Let us introduce the following k-derivations of the k-algebra A1. We
denote by D ∈ Derk(A1) (resp. E ∈ Derk(A1)) the derivation defined by∑n
i=1 ti,1∂ti,0 (resp.

∑n
i=1 ti,0∂ti,1). The derivations D,E have the following

first properties.

Proposition 5.2. Let k be a field of characteristic zero.
(1) For every polynomial P ∈ A0, we have D(P ) = ∆(P ) and E(P ) = 0.
(2) For every pair (i, j) ∈ {1, . . . , n}2 of integers, we have

D(ti,1tj,0 − tj,1ti,0) = E(ti,1tj,0 − tj,1ti,0) = 0.
(3) For every homogeneous ideal I of the ring A0, we have E(〈I,∆(I)〉) ⊂
〈I,∆(I)〉.

(4) Let ev1 : A1 → A0 be the (surjective) morphism of A0-algebras which
sends the variable ti,1 to ti,0 for every integer i ∈ {1, . . . , n}. For
every reduced homogeneous ideal I of the ring A0, for every polynomial
P ∈ N1(Spec(A0/I)), we have ev1(P ) ∈ I.

Proof. Assertions (1) and (2) are obvious and follow from a direct computation.
Let us prove assertion (3). Let g ∈ A0 be a nonzero homogeneous generator of
I of degree deg0(g). Then, thanks to the Euler identity, we have

E(∆(g)) =
n∑
i=1

∂ti,0(g)E(ti,1)

=
n∑
i=1

∂ti,0(g)ti,0

= deg0(g)g.

Let us prove assertion (4). Up to replacing the ideal I by each of its prime
components, we may assume that the ideal I is prime by Observation 3.10.
Then, by Subsection 3.8, there exist an integer N and a polynomial H 6∈ I
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such that HNP ∈ 〈I,∆(I)〉. Then, the polynomial HNev1(P ) belongs to the
ideal 〈I, ev1(∆(I))〉. And we conclude the proof by observing that, for every
homogeneous polynomial g ∈ A0, we have ev1(∆(g)) equals deg0(g)g; hence,
we have 〈I, ev1(∆(I))〉 = I. �

5.3. The following theorem can be interpreted as a formal “almost” integra-
tion of homogeneous polynomials in the ring A1. Precisely, we show in Theorem
5.4 that the action of the derivation D (resp. E) on the image of E (resp. D)
is near from “the” reverse action.

Theorem 5.4. Let k be a field of characteristic zero. For every bi-homogeneous
polynomial P ∈ A1 of bi-degree (d, e), with d, e ≥ 1, there exists a positive
integer α such that

D(E(P ))− αP ∈ 〈ti,1tj,0 − tj,1ti,0; i, j ∈ {1, . . . , n}〉.

The same formula holds for the polynomial E(D(P )).

Proof. We only prove the formula for the polynomial D(E(P )). The proof is
based on a direct computation. We have

(5.1)
D(E(P )) =

(
n∑
i=1

ti,1∂ti,0

)
◦

 n∑
j=1

tj,0∂tj,1

 (P )

=
(

n∑
i=1

ti,1∂ti,1(P )
)

+ T.

The first parenthesis in formula (5.1) equals, by the Euler identity, the polyno-
mial dP . Besides, we have

T :=
n∑
i=1

ti,1

 n∑
j=1

tj,0∂ti,0∂tj,1(P )


=:

n∑
i=1

Ti,

where we set, for every integer i ∈ {1, . . . , n},

Ti := ti,1

n∑
j=1

tj,0∂ti,0∂tj,1(P ).
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Let us fix an integer i ∈ {1, . . . , n}. We write

(5.2)

Ti =

ti,0 n∑
j=1

tj,1∂tj,1∂ti,0(P )

+

ti,1 n∑
j=1,j 6=i

tj,0∂ti,0∂tj,1(P )


−

ti,0 n∑
j=1,j 6=i

tj,1∂tj,1∂ti,0(P )

 .

For every integer j ∈ {1, . . . , n}, with j 6= i, we set

Ti,j = (ti,1tj,0 − ti,0tj,1) ∂ti,0∂tj,1(P ) ∈ 〈tα,1tβ,0 − tβ,1tα,0;α, β ∈ {1, . . . , n}〉

and observe, thanks to the Euler identity, that formula (5.2) can be rewritten
under the following form:

(5.3) Ti = dti,0∂ti,0(P ) +
∑n
j=1,j 6=i Ti,j .

Thus, formula (5.1) can be rewritten as

(5.4)

D(E(P )) = dP + T

= dP +
n∑
i=1

Ti

= dP + d

(
n∑
i=1

ti,0∂ti,0(P )
)

+

 n∑
i=1

n∑
j=1,j 6=i

Ti,j

 .

By the Euler identity applied to the second term in formula (5.4) we conclude
that

D(E(P )) = dP + T

= dP + deP +

 n∑
i=1

n∑
j=1,j 6=i

Ti,j


= d(e+ 1)P +

 n∑
i=1

n∑
j=1,j 6=i

Ti,j


which concludes the proof. �

5.5. From now on and up to the end of the section, we restrict ourselves to
the case of affine plane curves. The polynomial y1x0−y0x1 plays an important
role in our study as the following lemma underlines it:

Lemma 5.6. Let k be a field of characteristic zero. Let C be an affine plane
curve defined by the datum of a homogeneous polynomial g ∈ B0. Then the
polynomial y1x0 − y0x1 belongs to the ideal N1(C ).



158 M. MORÁN CAÑÓN AND J. SEBAG

Example 5.7. Lemma 5.6 does not hold in higher dimension. Let us consider
the hypersurface S of A3

k defined by the datum of the polynomial f = x2
0 +

y2
0 + z2

0 ∈ k[x, y, z]. Then x1y0 − x0y1, x1z0 − x0z1, y1z0 − z1y0 6∈ N1(S ).
Proof. By Observation 3.10, up to replacing g by each of its irreducible factors,
we may assume that the polynomial g is irreducible; then, we have to prove that
the polynomial y1x0−y0x1 belongs to the ideal ([g] : ∂(g)∞) (for some nonzero
partial derivative). Let us assume that ∂y(g) 6= 0 (a symmetrical argument
works if ∂x(g) 6= 0). We write

∂y(g)(y1x0 − y0x1) ≡ −x0∂x(g)x1 − y0∂y(g)x1 (mod ∆(g))
≡ −deg0(g)x1g (mod ∆(g)),

which concludes the proof. �

5.8. We consider the morphism of B0-algebras ev1 : B1 → B0 defined by
x1 7→ x0 and y1 7→ y0.
Lemma 5.9. Let k be a field of characteristic zero. Let g ∈ B0 be a reduced
homogeneous polynomial with C = Spec(B0/〈g〉). Let P ∈ B1 be a homoge-
neous polynomial (in x1, y1) of degree deg1(P ) = d. The following assertions
are equivalent:

(1) The polynomial P belongs to N1(C );
(2) The polynomial g divides ev1(P ) in the ring B0.

Example 5.10. The analog of Lemma 5.9 does not hold in higher dimensions.
Let us consider the hypersurface of A3

k defined by the datum of the polynomial
f = x2

0+y2
0 +z2

0 ∈ k[x, y, z]. Then the polynomial x1y0−x0y1 satisfies condition
(2) but does not belong to N1(C ).
Proof. By (4) in Proposition 5.2, we only have to prove (2)⇒ (1). By Obser-
vation 3.10, we may assume that the polynomial g is irreducible up to replacing
it by each of its irreducible factors. Two cases occur.
◦ Let us assume that there exists u ∈ k∗ such that g = ux. (By symmetrical

arguments, we could prove the case g = uy.) In this case, we have N1(C ) =
〈g,∆(g)〉 = 〈x0, x1〉. Hence, the polynomial P belongs to N1(C ) if and only
if it belongs to the kernel of the morphism of k-algebras ev : B1 → k sending
the variables x0, x1 to zero. Let us assume that the polynomial g divides
ev1(P ). Since P is 1-homogeneous, there exists q ∈ k[y0] such that ev(P ) =
P (0, y0, 0, y1) = q(y0)yd1 . Since ev(ev1(P )) = ev1(ev(P )), we conclude that
q = 0. In other words, we have P ∈ N1(C ).
◦ Let us assume that g is not divisible by x0 or y0, cases for which we have

proved the property. We have the formula

(5.5)
xd0P (x0, y0, x1, y1) = P (x0, y0, x0x1, x0y1)

≡ P (x0, y0, x0x1, x1y0) (mod y1x0 − x1y0)
≡ xd1P (x0, y0, x0, y0) (mod y1x0 − x1y0).
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By assumption, the polynomial g divides xd1P (x0, y0, x0, y0). By formula (5.5)
and Lemma 5.6, we conclude that xd0P (x0, y0, x1, y1) belongs to N1(C ). By
Lemma 3.4, we conclude that P (x0, y0, x1, y1) belongs to N1(C ) (which is
prime). �

Proposition 5.11. Let k be a field of characteristic zero. For every affine
plane curve C defined by the datum of a homogeneous polynomial g ∈ B0, the
ideal N1(C ) is stable under the actions of D,E.
In general, this assertion does not hold true. See Example 5.12.
Example 5.12. Let us consider the hypersurface S of A3

k defined by the
datum of the polynomial f = z3 + y2x + y3 ∈ k[x, y, z]. One can check that
D(∆(f)) 6∈ N1(S ). The polynomial P = 3y0x0z1 +3y2

0z1−y0x1z0−2y1x0z0−
3y0y1z0 belongs to N1(S ) \ 〈f,∆(f)〉 but D(P ) 6∈ N1(S ).
Proof. By Observation 3.10, we may assume that the polynomial g is irre-
ducible. Let P ∈ N1(C ). By Observation 3.10, there exist an integer M ∈ N,
a nonzero partial derivative ∂(g) of g and polynomials α, β ∈ B0 such that
(5.6) ∂(g)MP = αg + β∆(g).
By Proposition 5.2, we know that the derivation E stabilizes the ideal 〈g,∆(g)〉.
Then, by applying E to equation (5.6), we conclude that ∂(g)ME(P ) belongs
to the ideal 〈g,∆(g)〉 which concludes the proof by Observation 3.10. Let us
prove the assertion for the derivation D. By a direct computation, we obtain
D(∆(g)) = ∆(∂x(g))x1 + ∆(∂y(g))y1. Then, we observe, thanks to the Euler
identity, that

D(∆(g))(x0, y0, x0, y0) = deg(g)(deg(g)− 1)g,
and we conclude by Lemma 5.9. �

6. The general component of an affine plane curve defined by a
homogeneous polynomial

Let k be a field of characteristic zero. The aim of this section is to describe
presentations for the ideal N1(C ) when C is an affine plane curve defined by
the datum of a homogeneous polynomial in B0.

6.1. We introduce the following notation. Let m ∈ N. Let g ∈ B0 be a
homogeneous polynomial with deg0(g) = m and C = Spec(B0/〈g〉). For every
integer i ∈ N, for every polynomial g ∈ B0, we denote by Di(g) the element
D(i)(g)/i, if i ≥ 1, and D0(g) = g, which belongs to the ideal N1(C ). In
particular, for every integer i ≥ m+ 1, we have Di(g) = 0.
Proposition 6.2. Let k be a field of characteristic zero. Let m ≥ 1 be an
integer. Let C be an affine plane curve defined by the datum of a reduced ho-
mogeneous polynomial g ∈ B0 with deg0(g) = m. The ideal N1(C ) is generated
by the family D−1 := y1x0−y0x1 and the Di(g) for every integer i ∈ {0, . . . ,m}.
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Proof. By Proposition 5.11, for every integer i ∈ {0, . . . ,m} we have Di(g) ∈
N1(C ). Thanks to this observation and Lemma 5.6, we deduce that 〈y1x0 −
y0x1〉 + 〈Di(g); i ∈ {0, . . . ,m}〉 ⊂ N1(C ). Conversely, we have now to prove
that N1(C ) ⊂ 〈y1x0−y0x1〉+〈Di(g); i ∈ {0, . . . ,m}〉. We show the result by an
induction on the degree d (in x1, y1) of the polynomials in N1(C ) considered
as polynomials in the ring B0[x1, y1]. By Observation 3.10, we may assume
that g is irreducible. If P ∈ N1(C ) is a polynomial with degree d = 0, then
the polynomial g divides P by Lemma 3.4. Let d ≥ 1 and P ∈ N1(C ) with
deg1(P ) = d. By Subsection 3.13, we may assume that P is bi-homogeneous.
We observe that the degree of the polynomial E(P ) equals d−1 and belongs to
the ideal N1(C ) by Proposition 5.11. By the induction hypothesis, we deduce
that E(P ) ∈ 〈y1x0 − y0x1〉 + 〈Di(g); i ∈ {0, . . . ,m}〉. We conclude the proof
by applying the operator D to E(P ) thanks to Theorem 5.4. �

Example 6.3. Let k be a field of characteristic zero. Let f = x0y0 ∈ B0. In
this case, a direct argument on polynomials provides the formula

N1(C ) = {x0} ∩ {y0} ∩B1 = ([x0] · [y0]) ∩B1 = 〈f, x0y1, x1y0, x1y1〉.
By Proposition 6.2, we deduce another presentation of the ideal N1(C ) given
by

〈f, y1x0 − y0x1, x0y1 + y0x1, x1y1〉.

6.4. Let t ∈ N∗. For every integer i ∈ {1, . . . , t}, let γi ∈ k× be mutually
distinct elements. For every integer i ∈ {1, . . . , t}, we set fi = y0 − γix0 ∈ B0
and f = xε0y

ε′

0
∏t
i=1 fi with ε, ε′ ∈ {0, 1}. Let us denote by J the ideal of the

ring B1 defined by
J := 〈f1,∆(f1)〉 · 〈f2,∆(f2)〉 · . . . · 〈ft,∆(ft)〉.

The following bi-homogeneous polynomials of the ring B1 belong to this ideal

(6.1) δi :=
(

i∏
`=1

∆(f`)
)
×

(
t∏

`=i+1
f`

)
for every integer i ∈ {0, . . . , t}. We set C = Spec(B0/〈f〉).

Theorem 6.5. Keep the assumptions and notation of Subsection 6.4. The
family

B := {y1x0 − y0x1, x
ε
h1
yε

′

h2
δi(f), i ∈ {0, . . . , t}, h1, h2 ∈ {0, 1}}

is a Groebner basis of N1(C ) for the monomial order y1 >lex y0 >lex x1 >lex x0
in B1.

Proof. Let us prove Theorem 6.5. By Lemma 5.6 and the very definition of
the ideal J , we conclude that the family is contained in the ideal N1(C ). By
[2, Proposition 5.38], in order to prove that the family B is a Groebner basis
of the ideal N1(C ), it suffices to show that every element in N1(C ) has some



WEIGHTED HOMOGENEOUS PLANE CURVE SINGULARITY TANGENT SPACE 161

term in 〈lt(B)〉. Let us denote the polynomial δ−1 := y1x0−y0x1. We observe
that

〈lt(B)〉 =
〈
y1x0, {xεh1

yε
′

h2
y`1y

t−`
0 } `∈{0,...,t}

h1,h2∈{0,1}

〉
.

Let P ∈ N1(C ) that we may assume to be bi-homogeneous. We apply Lemma
5.9 and deduce that f divides ev1(P ) in the ring B0. Two cases occur:

(i) Assume that ev1(P ) 6= 0. Then, the polynomial P has some term of
the form ya1

1 ya2
0 xa3

1 xa4
0 such that lt(f) = xε0y

ε′

0 y
t
0 divides ya1+a2

0 xa3+a4
0 ;

hence, we have a1 + a2 ≥ t+ ε′ and a3 + a4 ≥ ε. The second inequality
shows that either xε0 or xε1 divide the term xa3

1 xa4
0 .

On the other hand, for ` ∈ {0, . . . , t}, the pairs (` + ε′, t − `),
(`, t− `+ε′) range over all possible pairs of nonnegative integers whose
sum equals t+ ε′, and thus some monomial in {yε′

h2
y`1y

t−`
0 }`∈{0,...,t}

h2∈{0,1}
di-

vides the term ya1
1 ya2

0 . We deduce that ya1
1 ya2

0 xa3
1 xa4

0 is divisible by
some monomial in {xεh1

yε
′

h2
y`1y

t−`
0 } `∈{0,...,t}

h1,h2∈{0,1}
and we have proved the

property.
(ii) Assume that ev1(P ) = 0. Then, by Proposition 4.6, the polynomial

y1x0 − y0x1 divides P ; hence, the monomial y1x0 divides lt(P ), and
the property holds. �

Remark 6.6. Along the whole article we have chosen the monomial order in
B1 to be the lexicographic one with y1 >lex y0 >lex x1 >lex x0. In fact the
proof would work with slight modifications for the lexicographic order for every
ordering of the variables. In the homogeneous case the graded lexicographic
order also works because it coincides with the lexicographic order, which is not
true for the weighted homogeneous setting in Section 7. Computer tests have
shown that we do not obtain the preceding Groebner basis for every monomial
order.

6.7. Let us mention the following consequence of 6.5, which improves Propo-
sition 6.2.

Corollary 6.8. Let k be a field of characteristic zero. Let f ∈ B0 be a reduced
homogeneous polynomial which is not divisible by neither x0 nor y0. We set
C = Spec(B0/〈f〉). The family formed by the polynomial y1x0 − y0x1 and the
Di(f) for every integer i ∈ {0, . . . ,deg0(f)} is a Groebner basis of the ideal
N1(C ) for the monomial order y1 >lex y0 >lex x1 >lex x0 in B1.

Proof. Let k′ be an algebraic closure of k. Let us consider the differential ideal
{f} in k{x, y} and let P be a polynomial in {f} ∩ B1. By Subsection 3.14,
the ideal {f} ⊗k k′ equals the radical of the differential ideal generated by f
in the differential ring k′{x, y}. By Theorem 6.5, the leading term lt(P ) of
the polynomial P is divisible (in k′{x, y}) by the leading term of some of the
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δi, for i ∈ {−1, . . . ,deg0(f)}. We observe that these leading terms are the
same as those of the family {Di}i∈{−1,...,deg0(f)}, in the notation of Proposition
6.2. But the polynomials in this family belong to k{x, y}, which concludes the
proof. �

Example 6.9. Let us fix the field k = Q. Let us consider the polynomial
f = x4

0 + x3
0y0 + y4

0 , which is irreducible in B0 and homogeneous of degree 4.
From a direct computation we obtain a Groebner basis of {f} ∩ B1 for the
monomial order y1 >lex y0 >lex x1 >lex x0:

B =
{
y1x0 − y0x1, f, y

3
0y1 + x2

0x1y0 + x3
0x1, y

2
0y

2
1 + x0x

2
1y0 + x2

0x
2
1,

y0y
3
1 + x3

1y0 + x0x
3
1, y

4
1 + x3

1y1 + x4
1

}
.

The family given in Proposition 6.2 is the following:

C = {D−1 := y1x0 − y0x1, D0 := f,D1 := 4y3
0y1 + x3

0y1 + 3x2
0x1y0 + 4x3

0x1,

D2 := 12y2
0y

2
1 + 6x2

0x1y1 + 6x0x
2
1y0 + 12x2

0x
2
1,

D3 := 24y0y
3
1 +18x0x

2
1y1 +6x3

1y0 + 24x0x
3
1, D4 := 24y4

1 +24x3
1y1 +24x4

1}.

We observe that the leading terms of the elements in B and C are the same.
Hence C is also a Groebner basis of {f} ∩B1.

7. The general component of an affine plane curve defined by a
weighted homogeneous polynomial

In this section we compute a system of generators of the ideal B1∩{f} when the
polynomial f is weighted homogeneous. Let (r, s) ∈ N2 be a pair of coprime
integers with r > s ≥ 2. The techniques we will use are partly similar to those
of the homogeneous case (see Section 6).

7.1. We begin by giving an analogue to Lemma 5.6 in the weighted homo-
geneous case.

Lemma 7.2. Let k be a field of characteristic zero. Let λ ∈ k×. Let (r, s) ∈ N2

be a pair of coprime integers with r > s ≥ 2. Let f = xr0 − λys0 ∈ B0. We
set C = Spec(B0/〈f〉). Then the polynomial sy1x0− ry0x1 belongs to the ideal
N1(C ).

Proof. The polynomial f being irreducible, we have to prove that sy1x0−ry0x1
belongs to the ideal ([f ] : ∂(f)∞) (for some nonzero partial derivative). Let
us reason with ∂y(f) 6= 0 (a symmetrical argument works for ∂x(f) 6= 0). We
write

∂y(f)(sy1x0 − ry0x1) ≡ −sx0∂x(f)x1 − ry0∂y(f)x1 (mod ∆(f))
≡ −rsx1f (mod ∆(f)),

which concludes the proof. �
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7.3. Now we give an analogue to Lemma 5.9. We consider the morphism of
B0-algebras ẽv1 : B1 −→ B0 defined by x1 7−→ sx0 and y1 7−→ ry0.
Lemma 7.4. Let k be a field of characteristic zero. Let λ ∈ k×. Let (r, s) ∈ N2

be a pair of coprime integers with r > s ≥ 2. Let f = xr0 − λys0 ∈ B0. We
set C = Spec(B0/〈f〉). Let P ∈ B1 be a 1-homogeneous polynomial of degree
deg1(P ) =: d. The following assertions are equivalent:

(1) The polynomial P belongs to N1(C ).
(2) The polynomial ẽv1(P ) belongs to the ideal 〈f〉 in the ring B0.

Proof. Let P ∈ N1(C ). By Observation 3.10, there exist an integer N ∈
N and a polynomial H /∈ 〈f〉 in B0 such that HNP ∈ 〈f,∆(f)〉. Then,
taking the image via ẽv1, the polynomial HN ẽv1(P ) belongs to the prime ideal
〈f, ẽv1(∆(f))〉 = 〈f〉, because ẽv1(∆(f)) = rsf . We conclude by Lemma 3.4.
Conversely, let P ∈ B1 such that ẽv1(P ) = P (x0, y0, sx0, ry0) ∈ 〈f〉 ⊂ B0. We
have the formula

(7.1)
sdxd0P (x0, y0, x1, y1) = P (x0, y0, sx0x1, sx0y1)

≡ P (x0, y0, sx0x1, rx1y0) (mod sy1x0 − ry0x1)
≡ xd1P (x0, y0, sx0, ry0) (mod sy1x0 − ry0x1).

By assumption, xd1P (x0, y0, sx0, ry0) ∈ 〈f〉, then by formula 7.1 the polynomial
sdxd0P (x0, y0, x1, y1) belongs to N1(C ), which is a prime ideal. By Lemma 3.4
the polynomial P (x0, y0, x1, y1) belongs to N1(C ). �

7.5. Let us state the main result of this section. Let λ1, . . . , λt ∈ k be
nonzero elements. Let (r, s) ∈ N2 be a pair of coprime integers with r > s ≥
2. For every integer i ∈ {1, . . . , t}, we set D̃−1 := D̃λi,−1 := sy1x0 − ry0x1

and D̃λi,ji
:= λis

jiys−ji

0 yji

1 − rjixr−ji

0 xji

1 , where ji ∈ {0, . . . , s}. For every
i ∈ {1, . . . , t}, if ji ∈ {−1, . . . , s}, we denote

(7.2) D̃j1,...,jt
= D̃λ1,j1 · · · D̃λt,jt

.

Theorem 7.6. Let k be a field of characteristic zero. Let λ1, . . . , λt ∈ k be
nonzero elements. Let (r, s) ∈ N2 be a pair of coprime integers with r > s ≥ 2.
Let f ∈ B0 be the polynomial f = xε0y

ε′

0
∏t
i=1(xr0−λiys0) with ε, ε′ ∈ {0, 1}. We

set C = Spec(B0/〈f〉). Then the family

B = {D̃−1, x
ε
h1
yε

′

h2
D̃j1,...,jt

, ji ∈ {−1, . . . , s}, i ∈ {1, . . . , t}, h1, h2 ∈ {0, 1}}
is a Groebner basis of N1(C ) for the monomial order y1 >lex y0 >lex x1 >lex x0
in B1.
Let us stress that, if the field k is assumed to be algebraically closed, The-
orem 7.6 provides a complete answer for weighted homogeneous polynomials
by Proposition 2.4. Subsection 3.14 explains how Theorem 7.6 also gives an
explicit Groebner basis in case the field k is not assumed to be algebraically
closed.
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Example 7.7. Let us fix the field k = R and let k′ := C. We keep the
notation in Subsection 3.14. Let us consider the polynomial f = x7

0 + x0y
4
0 ,

which is weighted homogeneous of weight (2, 3, 14). In k′[x0, y0], we have f =
x0(x3

0−iy2
0)(x3

0+iy2
0). By Remark 7.16, which follows from the proof of Theorem

7.6, the following family is a Groebner basis of ({f}⊗kk′)∩B′1 for the monomial
order y1 >lex y0 >lex x1 >lex x0:

B′ = {2y1x0 − 3y0x1} ∪ {(x`D̃0,0, x`D̃1,0, x`D̃2,0, x`D̃2,1, x`D̃2,2)`∈{0,1}}.

From the preceding family we obtain the following one by computing the
components (on the basis {1, i}) of its elements:

C = {2y1x0 − 3y0x1, f, x1x
6
0 + x1y

4
0 , 2y3

0y1x0 + 3x6
0x1, 2y0y1x

4
0 − 3y2

0x
3
0x1,

2y3
0y1x1 +3x5

0x
2
1, 2y0y1x

3
0x1−3y2

0x
2
0x

2
1, 4y2

1y
2
0x0 +9x5

0x
2
1, 4y2

1x
4
0−9y2

0x
2
0x

2
1,

4y2
1y

2
0x1 + 9x4

0x
3
1, 4y2

1x
3
0x1 − 9y2

0x0x
3
1, 8y3

1y0x0 + 27x4
0x

3
1,

12y2
1x

3
0x1 − 18y0y1x

2
0x

2
1, 8y3

1y0x1 + 27x3
0x

4
1, 12y2

1x
2
0x

2
1 − 18y0y1x0x

3
1,

16y4
1x0 + 81x3

0x
4
1, 16y4

1x1 + 81x2
0x

5
1}.

Now, from a direct computation we obtain a Groebner basis of {f} ∩ B1 for
the monomial order y1 >lex y0 >lex x1 >lex x0:

B = {2y1x0 − 3y0x1, f, x1x
6
0 + x1y

4
0 , 2y3

0y1x1 + 3x5
0x

2
1, 4y2

1y
2
0x1 + 9x4

0x
3
1,

8y3
1y0x1 + 27x3

0x
4
1, 16y4

1x1 + 81x2
0x

5
1}.

We observe that 〈B〉 = 〈C〉.

The proof of Theorem 7.6 is presented in Subsection 7.15 and is based on
results in Subsections 7.8 and 7.11. A key ingredient in our proof is to pass
from the weighted homogeneous setting to the homogeneous one. For this, let
us call C0 = k[u0, v0] and C1 = k[u0, v0, u1, v1]. We consider the morphism
of k-modules ρ : B1 −→ C1 given by x0 7→ us0, y0 7→ vr0, x1 7→ sus−1

0 u1,
y1 7→ rvr−1

0 v1. Let us stress that the morphism ρ is injective and satisfies the
formula

(7.3) ρ(ẽv1(P )) = ev1(ρ(P ))

for every polynomial P ∈ B1.

7.8. Let λ ∈ k×. Let us begin by important remarks in case f = xr0−λys0 ∈
B0. We set g := ρ(f) = urs0 − λvrs0 ∈ C0; it is a homogeneous polynomial.
We set C = Spec(B0/〈f〉) and D = Spec(C0/〈g〉). We use this notation in
Subsection 7.8.

Lemma 7.9. Let M = va1
1 va2

0 ua3
1 ua4

0 ∈ C1. Then, the following assertions are
equivalent:

(1) The monomial M belongs to the image Im(ρ) of the morphism ρ.
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(2) The following conditions hold true:

(7.4)


r|a1 + a2;
a1 + a2

r
≥ a1;

s|a3 + a4;
a3 + a4

s
≥ a3.

If these conditions hold, we have ρ−1(M) = 1
ra1sa3

ya1
1 y

a1+a2
r −a1

0 xa3
1 x

a3+a4
s −a3

0 .

Proof. Since the morphism ρ is injective, this assertion is straightforward. �

Lemma 7.10. We have the formula ρ(N1(C )) = N1(D) ∩ Im(ρ).

Proof. Let P ∈ N1(C ), then by Lemma 7.4 we know that ẽv1(P ) ∈ 〈f〉; hence,
we have ρ(ẽv1(P )) ∈ ρ(〈f〉) ⊂ 〈g〉. By formula (7.3), it means that ev1(ρ(P )) ∈
〈g〉. Since the polynomial g is reduced and homogeneous, by Lemma 5.9, we
deduce that this condition is equivalent to ρ(P ) ∈ N1(D). Conversely, let
Q ∈ N1(D) ∩ Im(ρ). Since the morphism ρ is injective, there exists a unique
P ∈ B1 such that ρ(P ) = Q. By formula (7.3) and Lemma 5.9, ρ(ẽv1(P )) =
ev1(ρ(P )) = ev1(Q) ∈ 〈g〉 = 〈ρ(f)〉.
◦ We assume that ρ∣∣B0

(〈f〉) = 〈ρ(f)〉 ∩ Im(ρ∣∣B0
) (where we see 〈f〉 and

〈ρ(f)〉 respectively as ideals in B0 and C0). Then, by the injectivity of the
morphism ρ, we deduce that ẽv1(P ) ∈ 〈f〉 and conclude the proof by Lemma
7.4.
◦ Let us prove ρ∣∣B0

(〈f〉) = 〈ρ(f)〉 ∩ Im(ρ∣∣B0
). We only have to prove that

ρ∣∣B0
(〈f〉) ⊃ 〈ρ(f)〉 ∩ Im(ρ∣∣B0

). Let R ∈ B0 such that ρ(R) ∈ 〈ρ(f)〉 (seen as
an ideal in C0). Then there exists a polynomial S ∈ C0 such that ρ(R) =
Sρ(f). Let us show that S ∈ Im(ρ). Each monomial va2

0 ua4
0 of ρ(R) is, by

our assumption, in the form va2
0 ua4

0 = vb2+c2
0 ub4+c4

0 , where vb2
0 u

b4
0 (respectively

vc2
0 u

c4
0 ) is a term of S (respectively ρ(f)). But ρ(R) and ρ(f) being in the image

of ρ, by Lemma 7.9, r divides a2 and c2; from a2 = b2 + c2 we then deduce that
r also divides b2. Analogously we have that s|b4, then vb2

0 u
b4
0 belongs to Im(ρ);

hence, the polynomial S also does. �

7.11. Let λ1, . . . , λt ∈ k be nonzero elements. We set fi = xr0 − λiys0, for
every integer i ∈ {1, . . . , t}, and Ci = Spec(B0/〈fi〉). We begin by proving that
Lemma 7.10 can be extended to this setting.

Proposition 7.12. Let k be a field of characteristic zero. Let λ1, . . . , λt ∈ k be
nonzero elements. Let (r, s) ∈ N2 be a pair of coprime integers with r > s ≥ 2.
Let f ∈ B0 be the polynomial f =

∏t
i=1(xr0 − λiys0) and g := ρ(f) ∈ C0 its

image by the morphism ρ. We set C = Spec(B0/〈f〉) and D = Spec(C0/〈g〉).
Then ρ(N1(C )) = N1(D) ∩ Im(ρ).
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Proof. As the fi are the irreducible factors of f , from the Kolchin irreducibility
theorem (see formula 3.4), we deduce the formulas:

(7.5) N1(C ) := {f} ∩B1 =
t⋂
i=1

({fi} ∩B1) =:
t⋂
i=1
N1(Ci).

For every integer i ∈ {1, . . . , t}, we set gi := ρ(fi) = urs0 − λivrs0 ∈ C0 and
Di = Spec(C0/〈gi〉). From formulas 7.5, the injectivity of the morphism ρ and
Lemma 7.10, we deduce the following equalities:

(7.6) ρ (N1(C )) =
t⋂
i=1

ρ (N1(Ci)) =
t⋂
i=1

(N1(Di)) ∩ Im(ρ).

On the other hand, by Subsection 3.14, we may assume that the field k is
algebraically closed. For every integer i ∈ {1, . . . , t}, let g(j)

i (j ∈ Ji) be the ir-

reducible factors of the polynomial gi; hence the decomposition g =
t∏
i=1

∏
j∈Ji

g
(j)
i

is the decomposition of g into irreducible factors. By applying the Kolchin ir-
reducibility theorem, we obtain

N1(Di) = {gi} ∩ C1 =
⋂
j∈Ji

{g(j)
i } ∩ C1,

and

(7.7) N1(D) = {g} ∩ C1 =
t⋂
i=1

⋂
j∈Ji

{g(j)
i } ∩ C1 =

t⋂
i=1
N1(Di).

We conclude the proof directly by formulas (7.6) and (7.7). �

Remark 7.13. Let us observe that Proposition 7.12 and Lemma 5.9 yield the
following characterization. Let P ∈ B1. Then, we have P ∈ N1(C ) if and only
if ρ(P ) ∈ ρ(N1(C )) (because of the injectivity of the morphism ρ) if and only
if ρ(P ) ∈ N1(D) ∩ Im(ρ) if and only if ev1(ρ(P )) ∈ 〈g〉 = 〈g1 · · · gt〉.

Proposition 7.14. Let k be a field of characteristic zero. Let λ1, . . . , λt ∈ k be
nonzero elements. Let (r, s) ∈ N2 be a pair of coprime integers with r > s ≥ 2.
Let f ∈ B0 be the polynomial f =

∏t
i=1(xr0−λiys0). We set C = Spec(B0/〈f〉).

Then the family

B = {D̃−1, D̃j1,...,jt : ji ∈ {−1, . . . , s}, i ∈ {1, . . . , t}}

is a Groebner basis of N1(C ) for the monomial order y1 >lex y0 >lex x1 >lex x0
in B1.

Proof. By applying Lemma 7.4 to every element in B for each of the fi, i ∈
{1, . . . , t}, and equality (7.5), we deduce that B ⊂ N1(C ). By [2, Proposition
5.38], in order to show that the family B is a Groebner basis of N1(C ) it suffices
to prove that every element in N1(C ) has some term in 〈lt(B)〉.



WEIGHTED HOMOGENEOUS PLANE CURVE SINGULARITY TANGENT SPACE 167

Let us compute the leading terms of the elements of B for the considered
monomial order.
◦ We have lt(sy1x0 − ry0x1) = y1x0.
◦ For D̃j1,...,jt

, let us denote ` := ]{ji : ji 6= −1}. Then, for every ji ∈
{−1, . . . , s}, i ∈ {1, . . . , t}, we have

D̃j1,...,jt
= D̃λ1,j1 · · · D̃λt,jt

=
∏
ji 6=−1

(λisjiys−ji

0 yji

1 − rjixr−ji

0 xji

1 )(sy1x0 − ry0x1)t−`

= λi1 · · ·λi`st−`+ji1 +···+ji` y
t−`+(ji1 +···+ji`

)
1 y

`s−(ji1 +···+ji`
)

0 xt−`0 + · · · .

Hence, we deduce that lt(D̃j1,...,jt
) = y

t−`+ji1 +···+ji`
1 y

`s−(ji1 +···+ji`
)

0 xt−`0 .
We conclude

〈lt(B)〉 = 〈y1x0, {y
t−`+(ji1 +···+ji`

)
1 y

`s−(ji1 +···+ji`
)

0 xt−`0 } 0≤`≤t
0≤ji1 ,...,ji`

≤s
〉.

Let P ∈ N1(C ). We aim to prove that some of its terms belongs to 〈lt(B)〉.
By Remark 7.13 we know that ev1(ρ(P )) ∈ 〈g〉 = 〈g1 · · · gt〉. Two cases occur:
◦ If ev1(ρ(P )) = 0, then, by formula 7.3, we have ρ(ẽv1(P )) = 0. By the

injectivity of the morphism ρ, we deduce that ẽv1(P ) = 0. But, by Proposition
4.6, this means that P ∈ 〈sy1x0−ry0x1〉; hence, we conclude that the monomial
y1x0 divides lt(P ).
◦ If ev1(ρ(P )) 6= 0, then P has some term ya1

1 ya2
0 xa3

1 xa4
0 such that lt(g) =

vtrs0 (we are considering the monomial order v1 >lex v0 >lex u1 >lex u0

in C1) divides ev1(ρ(ya1
1 ya2

0 xa3
1 xa4

0 )) = ev1(va1
1 v

r(a1+a2)−a1
0 ua3

1 u
s(a3+a4)−a3
0 ) =

v
r(a1+a2)
0 u

s(a3+a4)
0 . Thus, it implies that trs ≤ r(a1 + a2); hence, we have

ts ≤ a1+a2. For 0 ≤ j1, . . . , jt ≤ s, the pairs (j1+· · ·+jt, ts−(j1+· · ·+jt)) range
over all possible pairs of nonnegative integers whose sum equals ts. Thus some
monomial in {yj1+···+jt

1 y
ts−(j1+···+jt)
0 }0≤j1,...,jt≤s (which is a subset of lt(B),

take ` = t) divides the term ya1
1 ya2

0 , and hence also the term ya1
1 ya2

0 xa3
1 xa4

0 . �

7.15. Let us prove Theorem 7.6.
For every integer i ∈ {1, . . . , t}, we set fi = xr0−λiys0 ∈ B0, fcusp =

∏t
i=1 fi ∈

B0, gi = ρ(fi) = urs0 − λivrs0 ∈ C0 and gcusp = ρ(fcusp) ∈ C0. The correspond-
ing affine plane k-curves are respectively denoted by Ci = Spec(B0/〈fi〉) and
Ccusp = Spec(B0/〈fcusp〉). We write Cx (resp. Cy) for the affine plane k-curve
attached to the datum of xε0 (resp. yε′

0 ). By applying the Kolchin theorem as
in the proof of Proposition 7.12, we deduce that N1(C ) = N1(Cx) ∩N1(Cy) ∩
N1(Ccusp). Then by the injectivity of ρ and Remark 7.13 applied to Ccusp, we
deduce that, if we take a polynomial P in N1(C), then ev1(ρ(P )) belongs to
〈usε0 〉∩〈vrε

′

0 〉∩〈gcusp〉. We can write ev1(ρ(P )) in the form ev1(ρ(P )) = Qgcusp
for a polynomial Q ∈ C0, and usε0 and vrε

′

0 divide Qgcusp. Let us recall that
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gcusp =
∏t
i=1 gi =

∏t
i=1 u

rs
0 − λivrs0 = (−1)tλ1 · · ·λtvtrs0 + · · ·+ utrs0 . A direct

calculation then proves that usε0 vrε
′

0 divides Q. So, the polynomial ev1(ρ(P ))
can be written as Q′usε0 vrε

′

0 gcusp. We conclude that the polynomial ev1(ρ(P ))
belongs to the ideal 〈usε0 vrε

′

0 gcusp〉 = 〈ρ(f)〉. It is clear that B ⊂ N1(C ). By
[2, Proposition 5.38], in order to show that B is a Groebner basis of N1(C ) it
is sufficient to prove that every element in N1(C ) has some term in 〈lt(B)〉.
From the computations in the first part of the proof of Proposition 7.14 we
deduce that

〈lt(B)〉 =
〈
y1x0, {xεh1

yε
′

h2
y
t−`+ji1 +···+ji`
1 y

`s−(ji1 +···+ji`
)

0 xt−`0 } 0≤`≤t
0≤ji1 ,...,ji`

≤s
0≤h1,h2≤1

〉
.

Let P be a polynomial in N1(C). We have already observed that ev1(ρ(P ))
belongs to 〈usε0 vrε

′

0 gcusp〉. Then, we finish the proof in an analogous way as we
did in the proof of Proposition 7.14; the arguments are indeed the same as in
the last part of that proof.

Remark 7.16. We observe that we can take only some of the elements in B.
For example, the following family is a Groebner basis of N1(C ) (we keep the
notation and assumptions of Theorem 7.6):

B={sy1x0 − ry0x1, x
ε
h1
yε

′

h2
D̃j1,...,jt

: h1, h2∈{0, 1}, ji∈{0, . . . , s}, i∈{1, . . . , t}}
where ji is zero unless jm = s for every integer m < i.
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