• Title/Summary/Keyword: singular integral

Search Result 168, Processing Time 0.022 seconds

PLANCHEREL AND PALEY-WIENER THEOREMS FOR AN INDEX INTEGRAL TRANSFORM

  • Kim, Vu--Tuan;Ali Ismail;Megumi Saigo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.545-563
    • /
    • 2000
  • An integral transform with the Bessel function Jv(z) in the kernel is considered. The transform is relatd to a singular Sturm-Liouville problem on a half line. This relation yields a Plancherel's theorem for the transform. A Paley-Wiener-type theorem for the transform is also derived.

  • PDF

A CERTAIN EXAMPLE FOR A DE GIORGI CONJECTURE

  • Cho, Sungwon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-769
    • /
    • 2014
  • In this paper, we illustrate a counter example for the converse of a certain conjecture proposed by De Giorgi. De Giorgi suggested a series of conjectures, in which a certain integral condition for singularity or degeneracy of an elliptic operator is satisfied, the solutions are continuous. We construct some singular elliptic operators and solutions such that the integral condition does not hold, but the solutions are continuous.

BOUNDEDNESS OF CALDERÓN-ZYGMUND OPERATORS ON INHOMOGENEOUS PRODUCT LIPSCHITZ SPACES

  • He, Shaoyong;Zheng, Taotao
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.469-494
    • /
    • 2022
  • In this paper, we study the boundedness of a class of inhomogeneous Journé's product singular integral operators on the inhomogeneous product Lipschitz spaces. The consideration of such inhomogeneous Journé's product singular integral operators is motivated by the study of the multi-parameter pseudo-differential operators. The key idea used here is to develop the Littlewood-Paley theory for the inhomogeneous product spaces which includes the characterization of a special inhomogeneous product Besov space and a density argument for the inhomogeneous product Lipschitz spaces in the weak sense.

Analysis of singular systems via block pulse function : Some new results (블럭펄스함수를 이용한 Singular 시스템 해석의 새로운 접근)

  • Ahn, P.;Jin, J.H.;Kim, B.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.410-412
    • /
    • 1998
  • Some resent papers deals with the solution of LTI singular systems described in state-space via orthogonal functions. There are some complexity to derive the solution because all the previous works[2]-[5] used orthogonal function's integral operation. Therefore, in this paper, some new results are introduced by using a differential operation of orthogonal function to solve the LTI singular systems.

  • PDF

Mechanical Behavior of Fiber Metal Laminates with Local Delamination Defects (국부적 적층분리결함을 갖는 섬유금속적층판의 기계적 거동 특성)

  • Choi, Heungsoap;Choi, Hyungjip;Choi, Wonjong;Ha, Minsu
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2007
  • In this paper, the interlaminar crack problems of a fiber metal laminate (FML) under generalized plane deformation are studied using the theory of anisotropic elasticity. The crack is considered to be embedded in the matrix interlaminar region (including adhesive zone and resin rich zone) of the FML. Based on Fourier integral transformation and the stress matrix formulation, the current mixed boundary value problem is reduced to solving a system of Cauchy-type singular integral equations of the 1st kind. Within the theory of linear fracture mechanics, the stress intensity factors are defined on terms of the solutions of integral equations and numerical results are obtained for in-plane normal (mode I) crack surface loading. The effects of location and length of crack in the 3/2 and 2/1 ARALL, GLARE or CARE type FML's on the stress intensity factors are illustrated.

  • PDF

Numerical Solution For Fredholm Integral Equation With Hilbert Kernel

  • Abdou, Mohamed Abdella Ahmed;Hendi, Fathea Ahmed
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.111-123
    • /
    • 2005
  • Here, the Fredholm integral equation with Hilbert kernel is solved numerically, using two different methods. Also the error, in each case, is estimated.

  • PDF

Boundary Integral Equation Analysis of Axisymmetric Linear Elastic Problems (境界積分法에 의한 軸對稱 彈性 問題의 解析)

  • 공창덕;김진우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.787-797
    • /
    • 1986
  • An implicit approach is employed to obtain a general boundary integral formulation of axisymmetric elastic problems in terms of a pair of singular integral equations. The corresponding kernel functions from the solutions of Navier's equation are derived by applying a three dimensional integral and a direct axisymmetrical approach. A numerical discretization schem including the evaluation of Cauchy principal values of the singular integral is described. Finally the typical axisymmetric elastic models are analyzed, i.e. the hollow sphere, the constant thickness and the V-notched round bar.

Electromagnetic scattering from a conductor above ground illuminated by an embedded antenna (매설된 안테나에 의한 지면 위 금속도체의 전자파 산란)

  • 장병찬;이승학;김채영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.191-194
    • /
    • 2002
  • We analyzed radiation characteristics of dipole antenna in a lossy 9round with conducting object located above ground. Electric field integral equation is used to solve the problem. In this integral equation, GPOF(Generalized Pencil of Function) method is applied to derive the closed form of the electric field due to a current source. Surface current on a conductor is expanded with a well-known vector triangle basis function. The singular integration of a triangle patch is transformed to the non-singular integration by Duffy's method. This transformed non-singular integration is easily calculated by using one-dimensional Gaussian quadrature rule, instead of usual closed form evaluation.

  • PDF

ROUGH MAXIMAL SINGULAR INTEGRAL AND MAXIMAL OPERATORS SUPPORTED BY SUBVARIETIES

  • Zhang, Daiqing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.277-303
    • /
    • 2021
  • Under the rough kernels Ω belonging to the block spaces B0,qr (Sn-1) or the radial Grafakos-Stefanov kernels W����(Sn-1) for some r, �� > 1 and q ≤ 0, the boundedness and continuity were proved for two classes of rough maximal singular integrals and maximal operators associated to polynomial mappings on the Triebel-Lizorkin spaces and Besov spaces, complementing some recent boundedness and continuity results in [27, 28], in which the authors established the corresponding results under the conditions that the rough kernels belong to the function class L(log L)α(Sn-1) or the Grafakos-Stefanov class ����(Sn-1) for some α ∈ [0, 1] and �� ∈ (2, ∞).

Numerical Computation of Dynamic Stress Intensity Factors Based on the Equations of Motion in Convolution Integral (시간적분형 운동방정식을 바탕으로 한 동적 응력확대계수의 계산)

  • Sim, U-Jin;Lee, Seong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.904-913
    • /
    • 2002
  • In this paper, the dynamic stress intensity factors of fracture mechanics are numerically computed in time domain using the FEM. For which the finite element formulations are derived applying the Galerkin method to the equations of motion in convolution integral as has been presented in the previous paper. To assure the strain fields of r$^{-1}$ 2/ singularity near the crack tip, the triangular quarter-point singular elements are imbedded in the finite element mesh discretized by the isoparametric quadratic quadrilateral elements. Two-dimensional problems of the elastodynamic fracture mechanics under the impact load are solved and compared with the existing numerical and analytical solutions, being shown that numerical results of good accuracy are obtained by the presented method.