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A CERTAIN EXAMPLE FOR A DE GIORGI

CONJECTURE

Sungwon Cho*

Abstract. In this paper, we illustrate a counter example for the
converse of a certain conjecture proposed by De Giorgi. De Giorgi
suggested a series of conjectures, in which a certain integral condi-
tion for singularity or degeneracy of an elliptic operator is satisfied,
the solutions are continuous. We construct some singular elliptic
operators and solutions such that the integral condition does not
hold, but the solutions are continuous.

1. Introduction

We consider a second order, linear, elliptic partial differential equa-
tion with divergence structure:

(1.1) Di(aij(x)Dju(x)) = 0, i, j = 1, 2, · · · , n, n ≥ 2, x ∈ Ω ⊂ Rn.

Here aij(x) satisfies the following ellipticity condition:

(1.2) λ(x)|ξ|2 ≤
n∑

i,j=1

aij(x)ξjξj ≤ Λ(x)|ξ|2

for some measurable, finite, positive function λ(x),Λ(x), for all ξ =
(ξ1, ξ2, .., ξn) ∈ Rn, and almost every x ∈ Ω.

The derivative Di, Dj is understood in a weak sense. Namely, the
equation (1.1) means

(1.3) −
∫

Ω
aij(x)Dju(x)Diφ(x)dx = 0

Received October 23, 2014; Accepted November 10, 2014.
2010 Mathematics Subject Classification: Primary 35J70, 35J75; Secondary

35B44.
Key words and phrases: singular elliptic partial differential equation, Degenerate

elliptic partial differential equation, Continuity of a weak solution.
This work is supported by Gwangju National University of Education Research

Grant 2014.



764 Sungwon Cho

for all φ(x) ∈ C∞0 (Ω), where C∞0 (Ω) is a set of all smooth functions with
compact support in a given domain Ω. Thus, we seek a solution u in
some Sobolev space, which guarantee that the integral of (1.3) is finite.
More detailed definition of a weak solution, one may refer to Definition
2.1.

In the case of aij = δij the elliptic operator reduces to the well known

Laplace operator. The equation (1.1) is called uniformly elliptic if Λ(x)
λ(x)

is essentially bounded, and strictly elliptic if λ(x) ≥ λ0 for some positive
constant λ0.

On the contrary, if λ(x)−1 is unbounded, it is called degenerate, and
Λ(x) is unbounded, it is called singular.

When the equation is uniformly and strictly elliptic, namely, λ−1 and
Λ is essentially bounded, there are many established theories and results,
for example, maximum principle, a regularity of solution, the existence
of a solution, representation of solutions, etc. For example, see [10, 3].

Among them, we are interested in a regularity of solution, especially
a continuity and discontinuity of a solution. Here, we briefly explain
some classical works regarding a regularity property. In the planar case,
Morrey proved that a weak solution is eventually Hölder continuous
[4, 5]. For a higher dimensions (Rn, n ≥ 3), in the late 1950’s, De Giorgi
[1] and Nash [8] obtained Hölder continuity for elliptic and parabolic
case, independently. A bit later, Moser proved the Harnack inequality,
which leads to Hölder continuity [6, 7].

On the other hand, for the degenerate or singular case, to find optimal
conditions for λ(x) and Λ(x) to guarantee the continuity of a solution is
completely unsettled.

De Giorgi gave a talk in Italy regarding the continuity of solutions,
and proposed some conjectures [2], some of which are enlisted below.

The first one is about the singular case in higher dimensions.

Conjecture 1.1. Let n ≥ 3. Suppose that aij satisfies (1.2) with
λ(x) = 1 and Λ(x) satisfying

(1.4)

∫
Ω

exp(Λ(x))dx <∞.

Then all weak solutions of (1.1) are continuous in Ω.

The second one is concerned about the degenerate case in higher
dimensions.



A certain example for a De Giorgi conjecture 765

Conjecture 1.2. Let n ≥ 3. Suppose that aij satisfies (1.2) with
Λ(x) = 1 and λ(x) satisfying∫

Ω
exp(λ(x)−1)dx <∞.

Then all weak solutions of (1.1) are continuous in Ω.

The third one concerns the singular and degenerate case in higher
dimensions.

Conjecture 1.3. Let n ≥ 3. Suppose that aij satisfies (1.2) with
Λ(x) = λ(x)−1 satisfying∫

Ω
exp(Λ(x)2)dx <∞.

Then all weak solutions of (1.1) are continuous in Ω.

The fourth one concerns the degenerate case in planar case, n = 2.

Conjecture 1.4. Let n = 2. Suppose that aij satisfies (1.2) with
Λ(x) = 1 and with λ(x) satisfying∫

Ω
exp(

√
λ(x)−1)dx <∞.

Then all weak solutions of (1.1) are continuous in Ω.

Conjectures 1–3 still remains open. In this direction, the best known
result is due to Trudinger [11]. Regarding Conjecture 4, Onninen and
Zhong [9] proved that all weak solution are continuous under the as-
sumption that ∫

Ω
exp(α

√
λ(x)−1)dx <∞.

for some α > 1.
In his talk, De Giorgi also conjectured that the previous conditions

are optimal. For example, in Conjecture 1, one can not replace (1.4) by∫
Ω

exp(α
√

Λ(x)1−δ)dx <∞

for some δ > 0 and any α > 0. He gave a hint how one construct a
counter example. Following his idea, Zhong [12] constructed some dis-
continuous solutions which illustrate that Conjectures 1,2,4 are optimal.
For more details, one may refer to [12].

Obviously, any constant function is a solution of (1.1). In this pa-
per, we prove Theorem 3.1 in Section 3, showing that the converse of
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Conjecture 1 does not hold. Namely, we construct some singular ellip-
tic operators and non-constant continuous solutions, and the singularity
function Λ does satisfy

(1.5)

∫
Ω

exp(Λ(x))dx =∞.

For the definition of weak solutions and weak solution spaces are dis-
cussed in Section 2.

2. Preliminaries

We give, here, the definition of weak solutions. Following Trudinger
[11], we define scalar products:

A(u, v) =

∫
Ω

n∑
i,j=1

aij(x)Diu(x)Div(x)dx;

A1(u, v) =

∫
Ω

n∑
i,j=1

aij(x)Diu(x)Div(x) + Λ(x)u(x)v(x)dx

on the spaces C1
0 (Ω), C1(Ω), respectively. The weighted Sobolev spaces,

H1
0 (A,Ω) and H1(A,Ω) are then defined as the completions of C1

0 (Ω),
C1(Ω) under A,A1, respectively, and become Hilbert spaces.

Definition 2.1. We define a weak solution of (1.1) as a function u
in H1(A,Ω) satisfying∫

Ω

n∑
i,j=1

aij(x)Diu(x)Diφ(x)dx = 0

for all non-negative functions φ ∈ H1
0 (A,Ω).

One may refer to [11] for more detailed results on the properties
of the weighted Sobolev spaces H1

0 (A,Ω) and H1(A,Ω), and the weak
solutions.

Lemma 2.2. Let aij(x) = δij |x|α, u(x) = |x|β, then u ∈ H1(A, B1(0))
if and only if α+ 2β + n > 2.

Proof. It is enough to check that∫
B1(0)

|x|α|∇u|2 + |x|αu2dx <∞.
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For this, note that∫
B1(0)

|x|α|∇u|2dx =

∫
B1(0)

β2|x|α|x|2β−2dx

= ωn

∫ 1

0
β2rαr2β−2rn−1dr,

where ωn is a surface area of a unit ball in Rn. Also,∫
B1(0)

|x|αu2dx =

∫
B1(0)

|x|α|x|2βdx

= ωn

∫ 1

0
rα+2β+n−1dr.

Thus u ∈ H1(A, B1(0)) if and only if α+ 2β+n− 3 > −1, equivalently,
α+ 2β + n > 2.

3. Main result

Theorem 3.1. For n ≥ 2, there exist some singular elliptic operators
and non-constant continuous solutions such that

(3.1)

∫
Ω

exp(Λ(x))dx =∞.

Proof. Let Lu =
∑n

i,j=1Di(δij |x|αDju) for some α < 0, which will

be fixed later. In this case, aij(x) is δij |x|α, thus our operator L is a
singular elliptic operator with λ = 1, Λ(x) = |x|α. Note that

Lu = |x|α∆u+

n∑
i,j=1|

δijDi|x|αDju.

We choose u(x) = |x|β for some β > 0, then

∆u = β(β − 1)|x|β−2 +
(n− 1)β|x|β−1

|x|
= β(β + n− 2)|x|β−2

and
n∑

i,j=1|

δijDi|x|αDju = ∇|x|α∇|x|β

= α|x|α−1β|x|β−1.
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Thus in all,

Lu = β(β + n− 2)|x|α+β−2 + αβ|x|α+β−2

= β(α+ β + n− 2)|x|α+β−2.

Then u(x) = |x|β is a solution if and only if

(3.2) α+ β + n− 2 = 0.

Also u ∈ H1 if and only if

(3.3) α+ 2β + n > 2

by Lemma 2.2. We can choose α < 0, β > 0 which satisfy (3.2) and
(3.3). For example, α = 3

2 − n, β = 1
2 . Note that from the fact that

β > 0, a solution u is continuous, and it is immediate to see that, for
α < 0, ∫

Ω
exp(|x|α) ≥

∫
Ω

exp(c ln |x|−n) =∞

for some positive constant c.

A couple of remarks are in order.

Remark 3.2. One may try for the degenerate case in a similar way.
But we need a condition α > 0, which is impossible from α+β+n−2 = 0
for n ≥ 2.

Remark 3.3. If n = 1, then we can find α, β > 0. But this 1-D
case is not suggested by De Giorgi. In fact, we can find necessary and
sufficient conditions in 1-D case. Note that, from D(a(x)Du(x)) = 0,
Du(x) = C

a(x) , u(x) =
∫ x

0
C
a(t)dt + u(0). Thus u is continuous near 0 if

and only if
∫ ε

0
1

a(x)dx is integrable for small ε > 0.
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