• Title/Summary/Keyword: singular integral

Search Result 168, Processing Time 0.022 seconds

Continuous and discontinuous contact problem of a magneto-electro-elastic layer

  • Comez, Isa;Karabulut, Pembe Merve
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.67-77
    • /
    • 2022
  • In this study, frictionless continuous and discontinuous contact problems of a magneto-electro-elastic layer in the presence of the body force were discussed. The layer was indented by a rigid cylindrical insulating punch and supported by a rigid substrate without bond. Applying the Fourier integral transform technique, the general expressions of the problem were derived in the presence of body force. Thanks to the boundary conditions, the singular integral equations were obtained for both the continuous and the discontinuous contact cases. Gauss-Chebyshev integration formulas were used to transform the singular integral equations into a set of nonlinear equations. Contact width under the punch, initial separation distance, critical load, separation regions and contact stress under the punch and between the layer, and substrate were given as a result.

SINGULAR AND MARCINKIEWICZ INTEGRAL OPERATORS ON PRODUCT DOMAINS

  • Badriya Al-Azri;Ahmad Al-Salman
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.401-430
    • /
    • 2023
  • In this paper, we prove Lp estimates of a class of singular integral operators on product domains along surfaces defined by mappings that are more general than polynomials and convex functions. We assume that the kernels are in L(log L)2 (𝕊n-1 × 𝕊m-1). Furthermore, we prove Lp estimates of the related class of Marcinkiewicz integral operators. Our results extend as well as improve previously known results.

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR IMPULSIVE DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Miao, Chunmei;Ge, Weigao;Zhang, Zhaojun
    • The Pure and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.147-163
    • /
    • 2014
  • In this paper, we study the existence of positive solutions for singular impulsive differential equations with integral boundary conditions $$\{u^{{\prime}{\prime}}(t)+q(t)f(t,u(t),u^{\prime}(t))=0,\;t{\in}\mathbb{J}^{\prime},\\{\Delta}u(t_k)=I_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\{\Delta}u^{\prime}(t_k)=-L_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\u=(0)={\int}_{0}^{1}g(t)u(t)dt,\;u^{\prime}=0,$$) where the nonlinearity f(t, u, v) may be singular at v = 0. The proof is based on the theory of Leray-Schauder degree, together with a truncation technique. Some recent results in the literature are generalized and improved.

ON SOME NEW NONLINEAR DELAY AND WEAKLY SINGULAR INTEGRAL INEQUALITIES

  • Ma, Qing-Hua;Debnath, L.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.877-888
    • /
    • 2008
  • This paper deals with some new nonlinear delay and weakly singular integral inequalities of Gronwall-Bellman type. These results generalize the inequalities discussed by Xiang and Kuang [19]. Several other inequalities proved by $Medve{\check{d}}$ [15] and Ou-Iang [17] follow as special cases of this paper. This work can be used in the analysis of various problems in the theory of certain classes of differential equations, integral equations and evolution equations. A modification of the Ou-Iang type inequality with delay is also treated in this paper.

  • PDF

Exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics

  • Zhang, Xiaosong;Zhang, Xiaoxian
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.279-296
    • /
    • 2008
  • This paper presents an exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics. The boundary is discretized by straight segments and the physical variables are approximated by discontinuous quadratic elements. The integral for the hypersingular boundary integral equation analysis is given in a closed form. It is proven that using the exact integration for discontinuous boundary element, the singular integral in the Cauchy Principal Value and the hypersingular integral in the Hadamard Finite Part can be obtained straightforward without special treatment. Two numerical examples are implemented to verify the correctness of the derived exact integration.

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SINGULAR SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Wang, Lin;Lu, Xinyi
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.877-894
    • /
    • 2013
  • In this paper, we study the existence and uniqueness of solutions for a singular system of nonlinear fractional differential equations with integral boundary conditions. We obtain existence and uniqueness results of solutions by using the properties of the Green's function, a nonlinear alternative of Leray-Schauder type, Guo-Krasnoselskii's fixed point theorem in a cone. Some examples are included to show the applicability of our results.

Lp-BOUNDEDNESS FOR THE COMMUTATORS OF ROUGH OSCILLATORY SINGULAR INTEGRALS WITH NON-CONVOLUTION PHASES

  • Wu, Huoxiong
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.577-588
    • /
    • 2009
  • In this paper, the author studies the k-th commutators of oscillatory singular integral operators with a BMO function and phases more general than polynomials. For 1 < p < $\infty$, the $L^p$-boundedness of such operators are obtained provided their kernels belong to the spaces $L(log+L)^{k+1}(S^{n-1})$. The results of the corresponding maximal operators are also established.

AN AUTOMATIC AUGMENTED GALERKIN METHOD FOR SINGULAR INTEGRAL EQUATIONS WITH HILBERT KERNEL

  • Abbasbandy, S.;Babolian, E.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.429-437
    • /
    • 2001
  • In [1, 2], described a Chebyshev series method for the numerical solution of integral equations with three automatic algorithms for computing tow regularization parameters, C/sub f/ and r. Here we describe a Fourier series expansion method for a class singular integral equations with Hilbert kernel and constant coefficients with using a new automatic algorithm.

ON ASYMPTOTIC METHOD IN CONTACT PROBLEMS OF FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

  • Abdou, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.261-275
    • /
    • 2002
  • Besides asymptotic method, the method of orthogonal polynomials has been used to obtain the solution of the Fredholm integral equation. The principal (singular) part of the kerne1 which corresponds to the selected domain of parameter variation is isolated. The unknown and known functions are expanded in a Chebyshev polynomial and an infinite a1gebraic system is obtained.

GENERALIZED INVERSES IN NUMERICAL SOLUTIONS OF CAUCHY SINGULAR INTEGRAL EQUATIONS

  • Kim, S.
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.875-888
    • /
    • 1998
  • The use of the zeros of Chebyshev polynomial of the first kind $T_{4n+4(x}$ ) and second kind $U_{2n+1}$ (x) for Gauss-Chebyshev quad-rature and collocation of singular integral equations of Cauchy type yields computationally accurate solutions over other combinations of $T_{n}$ /(x) and $U_{m}$(x) as in [8]. We show that the coefficient matrix of the overdetermined system has the generalized inverse. We estimate the residual error using the norm of the generalized inverse.e.

  • PDF