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SINGULAR AND MARCINKIEWICZ INTEGRAL
OPERATORS ON PRODUCT DOMAINS

BADRIYA AL-AZRI AND AHMAD AL-SALMAN

ABSTRACT. In this paper, we prove LP estimates of a class of singular
integral operators on product domains along surfaces defined by mappings
that are more general than polynomials and convex functions. We assume
that the kernels are in L(log L)2(S"~! x S™~1). Furthermore, we prove
LP estimates of the related class of Marcinkiewicz integral operators. Our
results extend as well as improve previously known results.

1. Introduction and statement of results

Let R™ (n > 2) be the n-dimensional Euclidean space and S"~! be the unit
sphere in R™ equipped with normalized Lebesgue measure do. In addition, let
y = I%I € S" ! (y #0) and let Q € L'(S"!) be a homogeneous function of
degree zero on R" satisfying

(1.1) s Q(y")do(y') = 0.

The classical Calderén-Zygmund singular integral operator is defined by

Q /
Saf(z) = p-v./ flz—vy) (yn)d
R™ lyl
= fx K(z),
where f € S(R™), the class of Schwarz functions. Here, we set
Q)
K(x) = .
= Tapr

In [14], Calderén and Zygmund introduced the method of rotation and prove
that the operator Sq is bounded on LP provided that Q € L(log™ L)(S"1),
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where

log(t), t>1,
1°g+(t){ go() 0<t<1.

Since the publication of the papers [13] and [14], several authors have studied
the LP mapping properties of Sq, we cite [5], [12], [19], [21], [22], [30], among
others. Among several function spaces that are connected to the study of
singular integral operators, we recall the definition of Block spaces BS’O(S”*I),
g > 1 introduced by Jiang and Lu in [26] (see also [27]). A function Q €

BYO(S* 1) if Q = > ney Cuby, where {c,} C C, b, is a measurable function

supported in an interval I, C S"~! with the property that ||b,||rs <| I, |_1/‘1/,

1, 1 _
Wherea—l—?—land

MPO({eu}) = Y leul (1 +log™ (1T ).
p=1
It is well known that B):® € B):* whenever 1 < ¢y < g, LY(S*™!) € BO(S" 1)
and that
BYO(s* ) ¢ [ rusmh.
p>1

In [1], Al-Azriyah considered singular integrals along surfaces defined by map-
pings that are more general than polynomials and convex functions which were
introduced by Al-Salman [9]. In fact, Al-Salman introduced the following class
of functions:

Definition 1.1 ([9]). A function ¢ : [0,00) — R is said to belong the class
PE A (d) if there exist a polynomial P belongs to the class &, of all real valued
polynomials with degree at most d and a mapping ¢ € C%*1[0, 00) such that
(i) ¥(t) = P(t) + Ap(t),
(i) P(0) =0 and ¢V (0) =0 for 0 < j <d,
(iii) ) is positive non-decreasing on (0,00) for 0 < j < d+ 1.

It was pointed out in [9] that the class Ug>o(PEA(d)) contains properly the
class of polynomials &2 as well as the class of convex increasing functions. In
[1], Al-Azriyah proved the following result:

Theorem 1.1 ([1]). Let Sq.¢ be given by

Q /
Soaf(@)=po. [ fla=s) 75 i
Suppose that Q satisfies (1.1) and that Q € BY°(S"~') for some ¢ > 1. If
O € FE\(d), then

1520 (F)llLe ey < Cpll flle@n)

for 1 < p < oo with LP bounds independent of A € R and the coefficients of the
particular polynomial involved in the standard representation of ®.
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Our aim in this paper is to discuss the boundedness of the operator Sq o
in the product domains setting. The classical singular integral operator on
product domains is defined by

(Taf)(z,y) = p.v./ flz—uy— v)M

Rn xR™ ul™ [v]™

dudv,
where Q € L}(S"~! x S™~1) satisfying

(1.2) /SnilQ(u’,-)da(u’):/ Q-0 do (') = 0,

gm—1

and
(1.3) Qtz, sy) = Q(z,y)

for any t,s > 0.

The study of singular integral operators on product domains was initiated
by Fefferman [23] and Fefferman-Stein [25]. Subsequently, such operators have
been studied by many authors [6], [4], [18], [20], [25], among others. In par-
ticular, Fefferman and Stein proved in [24] that Tq is bounded on LP(R™™)
for (1 < p < o0) if  satisfies certain Lipschitz conditions. Consequently, the
L? (1 < p < 00) boundedness of T, was established under various conditions on
Q, first by Duoandikoetxea [18] for Q € L9(S"~1 x S™~1) with ¢ > 1 and then
by Fan-Guo-Pan [20] when § lies in certain Block spaces. In [11], Al-Salman,
Al-Qassem and Pan showed that Tq is bounded on L? (1 < p < o) provided
that Q € L(logt L)?(S*~! x S 1), i.e.,

(1.4) /Sn_1 - 1Q(u, v)|(log 2 + |Q(u,v)|)? do(u) do(v) < co.

It is worth noting that,
L(logt L)*(S"™' x ™71 ¢ L(log®™ L)"(S"~! x §™7') whenever r < s
and
LIS x §™ 1) S Llog™ L)' (S* !t x §™7H) S LY (S" T x §™7H)

whenever ¢ > 1 and r > 1. In [11], Al-Salman, Al-Qassem and Pan proved that
T may not be bounded on LP if we replace the condition € L(log L)?(S" ! x
Sm=1) by Q € L(log L)?>~¢(S"~! x S™~1) for some ¢ > 0. This shows that the
condition Q € L(log L)?(S"~! x S™~1) is nearly optimal. In light of this result
and the one parameter cases in [1] and [9], we consider the operator
Q(u', v
Tusoal)0) = v [ flad(udy=(olp) oot dud,
R" xR™ ul™ |v]

where ®, U : [0,00) — R are of the type in Definition 1.1 above.

Our main result is the following:
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Theorem 1.2. Let Q € L(log L)?(S"~! x S™71) satisfying (1.2)-(1.4). If
O e P6\(d), Ve PECo(b) ford,b>0 and A\, a € R, then Tep v o is bounded
on LP(R™ x R™) for 1 < p < co with LP bounds independent of A, € R and
the coefficients of the particular polynomials involved in the standard represen-
tations of ® and V.

We remark here that Theorem 1.2 is different from the corresponding result
in [11] even in the special case of polynomial mappings. In fact, if ®(t) = P(t?)
and ¥ (t) = Q(t?), where P and @ are real valued polynomials, then the result
in Theorem 1.2 can be obtained from Theorem 1.3 in [11]. However, if ® and
U are general polynomials, the result in Theorem 1.2 is not covered by the
corresponding result in [11]. Furthermore, it can be easily seen that Theorem
1.2 above generalizes the corresponding results in Corollaries 3.1-3.4 in [10].

By making use of similar estimates in this paper, we will be able to prove
the L? boundedness of the related Marcinkiewicz integral operators. For 2 &
LY(S™1 x S™~1) satisfying (1.2)-(1.3) and mappings ®, ¥ : [0,00) — R as
above, we consider the operator

,
Moo f(z,y) ( / / FY(f) () 22—2<f’+8’>dt’ds')2,
where
FOY(f)(x.y)
= [ [t ety - we) ) dude
) a1 JofT

and A(t,s") = {(u,v) € R* x R™ : |u| < 2" and |[v] < 28}, When ®(t) =
U(t) = t, the operator Mg ¢ v is known by the classical Marcinkiewicz integral
operator on product domains which is denoted by Mg .. In [17], Ding proved
that Mgq . is bounded on L? if Q € L(log L)?(S"~! xS™~!). On the other hand,
Chen, Ying and Fan in [15] proved the L? (for all 1 < p < co0) boundedness
under the same condition on 2. In [16], Choi established the L? boundedness of
Mg, . under the weaker condition Q2 € L(log L)(S"~! x S™~1). Subsequently,
Al-Qassem, Al-Salman, Pan and Chang proved the LP boundedness for all
1 < p < oo provided that Q € L(log L)(S"~1 x S™~1) [3].

Using estimates similar to those obtained for Ts v .o, we prove the following
result for the operator Mg o w:

Theorem 1.3. Suppose that Q € L(log L)(S"~! x S™~1) and ®, ¥ as in The-
orem 1.2. Then Mg s v is bounded on LP(R™ x R™) for 1 < p < oo with L?
bounds independent of A\, € R and the coefficients of the particular polynomi-
als involved in the standard representations of ® and V.

This paper is organized as follows. In Section 2, we present few introductory
lemmas and results. A proof of Theorem 1.2 will be presented in Section 3.
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Section 4 is devoted to the estimates concerning the Marcinkiewicz integral
operator. Finally, the proof of Theorem 1.3 will be presented in Section 5.

Throughout this paper, the letter C' will stand for a constant that may vary
at each occurrence but it is independent of the essential variables.

2. Preliminary estimates
We start by recalling the following inequality in [19]:

Lemma 2.1 ([19]). Suppose that P(y) = >, _,, @ay® is a polynomial of
degree m on R™ and € < % Then there exists A. > 0 such that

| et < AP

where
1Pl =" laal.
loe|=m
The bound A. may depend on e, m andn but it is independent of the coefficients
of the polynomial.

In order to deal with estimates involving mappings of the type in Definition
1.1, we recall the following lemma in [1]:

Lemma 2.2 ([1)). If ¢ € C%*0,00) and satisfies the conditions (i)-(ii) in
Definition 1.1, then
(i) plar) <ap(r) for0<a<1andr >0,
(ii) p(ar) > ap(r) fora>1 andr >0,
(iii) @9*1(r) = r=d=1p(r) for r > 0.

The following result is proved in [9]:

Theorem 2.3 ([9]). Suppose that T : R" — R? is a non-constant mapping
and assume that ¥ € PE€\(d) for some d > 0. Suppose also that A € R and
p>0. IfQ € LY(S"1) is homogeneous of degree zero in R™, then the mazimal
function My o given by

Qy')

My a(f)(x) = sup "

JEZ

dy

Lo A v Y

satisfies

A w(f)llp < Cp Q1 1£]lp
for 1 < p < oco. Here, the constant C, is independent of A\, Y(y") and the
coefficients of the particular polynomials involved in Definition 1.1 of W.

We shall need the following result in [4] which is an extension of a result of
Duoandikoetxea in [18]:
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Theorem 2.4 ([4]). LetMNeNcmd{)\(l’s) k,jeZ,0<I< N, 0<s<
M} be a family of Borel measures on R™ x R™ with )\(l 9 = 0 and )\,(C?;s) =0 for
every k,j € Z. Let {a;,bs : 1 <I<N,1<s< M} C]R“‘\(O,Z)7 {B(l), D(s) :
131§N,133§M}QN{%,33.1§1§N 1<s< M} CR", and
let {L;:1<1<N}CLR",REW) and {Q, :1 <5< M} C LR™ RPE),
Suppose that for some C > 0, B > 1, and py € (2,00), the followings hold for
k,jeZ,1<I< N, 1<s<M,(&n) e€R"xR™, and arbitrary functions
{gk,;} on R x R™ :

i) A < oB;
(i) [N €| < OB [af B L) ¥ Q)| ¥ ;

/3
NG s H [P Qa(m)]”
(iii) )\,(f’})(f,n) l 1 )(57 )‘ < OB? |afBL, 5)} #[p2P Q)] B

m\m -

(iv) X,i{;-”(f,n)—v«s Den)| < B |l P 0P Q|
W) (A€ = X e = ATV Em + 2TV e
Bs
oy ) B
< cp fof<on(o) ¥ 1T
i) [V 6m = AV | < 0B ol PLi©)] s
s S(l—1,s— ; Bs
(vil) X “><f, ) =2 En)| < OB piPQum)| 7
(Zkyezp‘(l s)*gk,jF)ZH < CB? (Zk,jEZ','gk,j 2)2
DPo Po

Then for py < p < po there exists a positive constant C), such that

(viii)

ST < CB?||fll;
k,jEZ o
1/2
ST pP? < CB?||fll,
k,jEZ
Po

hold for all f in LP(R™ x R™). The constant C, is independent of B and the
linear transformations {L;}¥, and {Qs}M,.

For w € NU{0} and j € Z, we let a, = 2@V and I;, = [af,, al"!]. We let
L) ={y eR": |yl € [}

and

I =y e R™: |yl € [;.}.
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For a homogeneous function € : S*~1 x S"~1 — R and w € NU {0}, we define
the family of measures {0¢, v.0,jkw : J, k € Z} by

/ Jdoo, w.0,jkw
R™ xR™
Qu',0")
= fla=@(ju)) v,y = U(|jo]) V') 7 dudv.
/I;;gxf,gjg) |ul™ [o]™

The corresponding maximal operator is defined by
(00, w.0.0)" f(2,y) = sup | 0w, w04kl * f(z,9)].
JkEZ
For simplicity, we shall write oy, ; to denote 0¢ v 0, jrw and o, to denote

(0, w,0w)"
Since ® € L€ \(d) and ¥ € PE€ ,(b) for some b, d > 0, there exist A, a € R,
Pec P, Qc Py, o €CMH0,00) and ¢y € C*T1[0, 00) such that

O(t) = P(t) + dp1(t) and ¥(r) = Q(r) + apa(r).

We assume that P(t) = ZZ:O cr1t* and Q(r) = ZII;:O cr2m®, where {cj 1}
and {c 2} are constants. For 0 <[ <dand 0 <s <b, let

chltk and  Qs(r chgr

k=0

Here, we use the notation that Zje(o = 0. Now, we define the measure

d+1,b+1
Sld+Lb+1)

Wik via the Fourier transform by

(2.1) g gy = / i@ (u) e (o) poo') W0 dv,
1 (n) g (m)

ok Ju[™ o™
and {o0?) 10 <1< d,0<s<b} is defined by

! /!
(2:2) 3U§)@'n):t/ e=i(Pu €' +Qu (o) ) UL g
IR 1 erm |ul™ o™
Notice that if €2 satisfies the cancellation property (1.2), then

500 _ =(d+1,0) _ ~(0b+1) _
wik = Owik =0k =0

We have the following result:

Lemma 2.5. Let { i}dj,i’bﬂ) 2 j, k € Z} be as above. Suppose that Q €

LA(S"=txS™=1) for some q > 1. LetBQw (w+1)2 (||Q||L1)17%+1(||Q”Lq)%+1
Then

. d+1,b+1

@ ol ) < 0w+ 12 Q15
.. Ad b

(11) 72_]];; +1)(§7 )

< CBQ,w ‘)\ 1 (ai}) é’ |7r1'(dr+11)(w+1) ‘Oé V2 (af}) n ‘7q’(b+11)(uJ+1) ;

q
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cooy | ~(d+1,0+1 ~(d,b+1)
(i) [ 4 6m) =3 )|
. 1 1
< C Bq |)\@1 aJ—H g‘wﬁ—l |a<p2(afj)77| 7/ (o+1) (wF1)

. ~(d+1,b+1 ~(d41,b)
(iv) [0 Em) — 5l (e )

< CBoy [ Api(ad) €| TEVETD | aipy(akth)y|= ;

() [ e m =3 e — S € m) + 7S E )|

< C (w+ D)2 Q11 |Apr(alh) €155 aps(akth) n| 75

(vi) [ E6m) = BN E m)| < € (@ + D2 [0l g (adt) €7
(vii) [3575 (€ m) = 350 € | < € (w+ 1?1900 | @ palat) n] 7T
where C is independent of w and k,j € Z, (&,n) € (R™,R™).

Proof of Lemma 2.5. The estimate (i) is straightforward. In fact, we have

(d+1,b+1 —n |, |—-m
o [0l ol duds
)
<19z (In(aw))? < C(w+ 1) (|-
To see (ii), notice that

~(d+1,b+1
B e m)|

< / |Q(u’,v")| / (@) 4w () o) AT do(u')do(v'),
Sn—1xgm—1 Ijwx Ik r
which by Hélder’s inequality implies that
(d+1,b
@3 [ e
1

<||Q||q(/s M do(u')do(v’>) ,
71,—1>< m—1

where

. / N dtd
Aj (&m0 = / e i(2® gu'+ () o) LET
I

j,wXIk,w tr

By change of variables and triangle inequality, we get

|Aj ko (& u',n,0")| < Tjwa(€-u') Jrww(n-v),

/ " i@ e 4
1 t

/ " ite(ab ) |
1 7’.

where

Jj7w7®(§a u/) =

)
and

T w(n,v') =
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Notice that ®@+D () = Ap{™™ () and TV (r) = a P (r). Thus, by

Lemma 2.2, we have
2 (@, 1) = [ A{™V (e, 1)
> | Xal, )" il 1)
>C |/\<)O1 (a’z.))‘v
whenever af, < ¢ < af;"*. Similarly, we have
| (al )| > Clags (ab)]
Thus, by Van der Corput lemma in [29], we get
: _1
Jj,w,@(&au/) < P‘@l(ai})f ! U/| o
and
1
(2.4) Jiw,w(n,0) < Japs (al)n- U’} S
Thus,
(25) |Aj,k,w(£a ’LL/,77,’U/)| < P\ ﬁpl(ai;)g ! u/‘_m ’CHPQ (af)) n- UI‘_m .
Now, it is radially seen that

(2.6) |Aj (€' 0, 0)] < € (In(a,))? < C (@ + 1)

Then, by interpolation between (2.5) and (2.6) with € = %, we get

(27) |Aj7k,W(§7u/7naU/)‘
. 1 1
< Cw+1)? [Api(al) €| 7D |apy (af)n-of| 7@
Now, let

(2.8) Fgq= sup (/Sn_1 [ u’|7#1 da(u'))

g/egn—l

e

and

-Q\‘ =

__1
Gy = sup (/ T da(v’>)
n/esm—l Sm—l

Since F4 and G, < oo, we have

.
o’

(29)  Hap= ( / & T TR do(u’)da(u’>)
Sn—l XSNL*I
< fd gb < 0.
Thus, by (2.3) and (2.7), we get
~(d+1,b
210) 3L )|

< C(w+1)?9 e
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1
(/ Ao @) €l aga (ab) - o) do(0) )
§n—1x§m—1
. 1 1
< C(w+1)? Qe Hap | Apr (al) €7 7@ Jagpy (al)n|” 70D
< C(w+ 129 ol Ay (ad) €] TED Javpy (ak) | T
It can be easily seen that a(d;r,i P gatisfies
(2.11) G €] < (@) 195 < € @+ 122 -
Finally, by interpolation between (2.10) and (2.11) with 0 < € = wT—l <1, we

get

. -1 1
(6| < € Baw N1 (a) €17 TEIE Ja s (al) nf T

To get (iii), we have

~(d+1,b+1 ~(d,b+1
‘Uf,,}fk e -l )(&n)’

. /
/ / Q(U/,U/) e—z‘l’(r) n-v
STL*l XS'"L*I I wXIk,w

2

(67i<1>(t)5-u’ _ efiP(t)é‘u') ﬁdrd (u)do(v)].

Thus by Fubini’s theorem, the fact that a/, < t < af™! and ¢; is increasing,
we get

(2.12) ‘3(d7u1,b+1)(£’ ) — db+1)(€7 )‘

w,j,k Ow g,k
dr| dt
< [agr(althy g / / / () e O (o) | o)
§n—1 m=1J1, .,
< In(ay) [Mpr(al) €| / Q' 0)| Jkw,u(n, ') do(u') do(v').
gn-1 Jgm—1

As Jiww(n,v') in (2.4), we have

(2.13) Jiew,u(n,0) < Japs (al)n- o[
On the other hand, we have
(2.14) Jkww(n,v) <O (w+1).
Thus by interpolation between (2.13) and (2.14) with 0 < ¢ = % < 1, we obtain
_ 1
(2.15) Trw,w(n,0") < C(w+1) [aps (af)n-o'| 0.
Thus, by (2.12), (2.15) and Holder’s inequality, we get
~(d+1,b+1) ~(d,b+1
(2.16) Gogr e =355 6
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. _ 1
< C(w+ 1?9 na [Ap1(ad ) €| |apa(ak) n|” 7@ .
Thus by (2.16) and the observation that
~(d+1,b+1) (d,b+1
B (6 ) — 550D (6m)| < (m(a)? 9]
< C(w+1)*9lz,
we get
(d+1,b41) (d,b+1
)0 7jk+ (E’ ) w‘j;:)(57 )‘
; 1 R T
< OBa. Aor(a™) €77 Jaga(al) o 7o

Similarly, we can obtain the estimates (iv), we omit details.
For the estimate (v), we have

~(d+1,b ~(d,b d 1,b ~(d, b
(2.17) TR () B e (37 I P (A7) IR oA (A7)
< [ [ iawepe ey
Sn—1lxsm—1 T wX Ik o
) dt d
e 1| S do(u) do (o)
< Cw+1)? Q1 \Aw(azflm |agpa(alt) 7).
On the other hand, we have
~(d+1,b ~(d,b ~(d+1,b ~(d, b
(2.18) G (g ) — 3P (€ m) — LD (e ) + 510 (6,m)

< (In(aw)* Q2 < C(w+1)* |2 1

By interpolation between (2.17) and (2.18) with 0 < e = w%rl < 1, we obtain
the estimate (v).
Now, to obtain the estimate (vi), we have

~(d+1,b ~(d,b)
L Em - e )|
: ) dt d
< / / 1Q(u/,0")] ]e*Mw(ﬂﬁ-u - ——rd (') do(v').
Sn=1xS§m—=1 JI, xI o t

Now, since af, < t < a/;"! and ¢ is increasing. Then by change of variables,
we obtain

(219) LT €m - aEm)| < € @+ D290 Per(ad €.
In addition, we have
(2.20) FE € m) -3 E | < C w12l

By interpolation between (2.19) and (2.20) with 0 < e = =5 < 1, we get

the estimate (vi). By same procedure, we obtain (vii). This ends the proof of
Lemma 2.5. ]
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. . l,
Now, we move to the estimates concerning the measures {UEJ ;)k}:

Lemma 2.6. Let {ag;k 0<1<4d,0<s<b} beas above. Suppose that Q €

LS xS™1) for some q > 1. Let Boo=(w+1)2 (| 11)" "7 (||Q|pe) =T .
Then

(i) ||o£f;k|| <C W+ 1?9l
(ii) [75%(Em)

< CBayle (@) 1! g e T | e (ak)s sl |~ m
(i) [oL5k(6m) =507 )

<CBQW\CZ1( a5 cgn (ak)* sty | 7oA ;

(iv) w,j,k(§777) le;kl)(f n)
< CBqg,, ’cll (ai) l'§|_ TT(eTD ’c 2(aktt sn|%+1.

W) [Ushem =l €m =5l em +al 1 Ve
< C(w+1)2 |9l e (ad ) €|=5 |652( ktlys o

. ~(l,s ~(1 s— i I
() 3 (Em) = 8555 TR Em)| < € (o D@ uelern (a1 ¢)7H
(vii) [543 €m) —5l ”(&n)\ < C (wH1)? Q|1 |esa(akth)s n|=F

where C is independent of w and k,j € Z,(&,n) € (R™,R™).

Proof of Lemma 2.6. First, the estimate (i) is trivial. To prove (ii), by Holder’s
inequality and polar coordinates, we get

@21) |5l m)|
< ( / |Q<u’,v’>|qda<u’>da<v'>)
Sn—1xgm—1

(/Sn1><§m1
i
(1/

<tioly ([ ieledmal” dotiio)) "
.

1
q

1
Py

q/
/ i (B0 €' 4Qu(r) ) 4L AT
Ij X 1k,w ¢

da(u')da(v’))

where
) dt dr

Ljkw(&u',n,0") :/ e~ (P € +Q. () v .
LioxTiw tr

J»

Thus, by change of variables and triangle inequality, we get

Lk (&0, 0)| < U, p (6 0) Uk, (0:0),
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where
/ Pl b ety At
Ujw,p(§u') = e w —
1 t
and u
w
Uhoa = | [t L
9 b s 1 71
Since,

l

d d®
%Pl(aj t)=cn (aj )l I! and aQs(afj T)=Cs2 (aff))s s!.

Thus, by Van der Corput lemma in [29], we obtain

S Pl e Ot _
U@ty = [0 G < s @it 1w
1
and
(2.22) Ukw,q.(n,v ") < | cs.2 (a )P sln-w ‘
Thus,

(2:23)  |Ljpw(&uin, ) < Jan (@) 1w/ 7T | ega (al) sty o7
It is easy to see that
(2.24) |Ljkw(& ', m,0)| < O (w+1)%
Therefore, by interpolation between (2.23) and (2.24) with € = %, we get
(225) ‘Lj,k,w(gvul7navl)‘
< Clw+1)? e (@) e s rd |cso(al)® sl o) 775,
Now, by the same argument as in (2.8)-(2.9), (2.21) and (2.25), we obtain
~(l,s
(2.26) 70 € m)
< C (w12 Qo ferr (ad)! 11 €[ [can (al)* st | 75
On the other hand, we can obtain
~(l,s
(2.27) FUEn| < Cw+ D9l

Finally, by interpolation between (2.26) and (2.27) with € = we get

1
w417
‘A(l s

i)
< CBale () 1€ TT g5 (ah)* sly| 7o

For (iii), we have

0 em — 3055 €m)|

/ / e i(P(D) Eu/ +Qu(r) n-v') Qv = dt @dg(u/) do(v')
§n—1yx§m—1 LjwXTh,o t r

413
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_/ / e (P () €+ Qa(r) 1) o/ o) a @do(u/) do(v')
§n—1y§m—1 IiwX Tk o t r

7»

/ / Qu',v') e Qe
Sn=IxSm=1 JI; ,xIk

J

(e_ipl(t)g'"/ — e_ip“l(t)f'“/) %ﬁd(f( Ndo(v')].

By Fubini’s theorem, we get

e ~ 30517 € m)

. , d
g/ / / Qu,v)e= Q1 o (1)
§n—1 I, gm—1 Thw T
‘efiPl,l(t)E-u' (e*iClJt e’ )‘ *dO’
dr| dt
< |cll (al)) §|/ / / / (u',v) *lQ(”)”“d (v )—T — do(u)
Sn— 1 §m— 1 Iku.) t

< In(ay) |cl71 (ai)l§| / Q0| Ug g, do(u')do(v'),

Sn—l XSm,—l
where
(e7%)
o (Qualrynuy AT |
1 'S

Ukavas (777 Ul) =

As (2.22), we have

(2.28) Uk,w,Q. (n, v') < | cs,2 (af;)s slg-o'|7>
On the other hand, we have
(2.29) Uk w,0.(n,0") < C(w+1).

By interpolation between (2.28) and (2.29) with 0 < € = i, < 1, we obtain

(2.30) Ukw.@.(1,0') < C(w+1)|esz (af)® sln-o| 77+

Thus, by (2.30) and Holder’s inequality, we get

@31 |al5Em —801" En)
< 1) Ina) @01l ('€l 0" ol
< C(w+1)? (|| aler (a7F1)€] les 2 (al)® sl m| ™o

By straightforward calculations, it is easy to obtain that

(2.32) 5 (€)=l 1 E )] < Cw+1)? Q).



SINGULAR AND MARCINKIEWICZ INTEGRAL OPERATORS 415
Finally, we combine (2.31) and (2.32), to get

w]k(§ 77) Ag]is (6”7)

< CBqu |Cl 1 (aJ'H) £|w+1 s 2( )5 sl s(u+1)

Similarly, we can obtain the estimates (iv), we omit details.
For the estimate (v), we have

l 1,s ~(l,s—1) ~(-1,s-1)
(233) ‘ wjk(g 77) ,]k )(67 ) fo]k (5 77) LE)]]C (fvn)
<[ [ mwaeearer
Sn=1xSm=1 JI; xIk .
- dt d
jemera ™ 1= S do(u) do(v)

< Cw+1)? 1 |011(CLJ+1) Ellesz (agth)
where af, <t < altl, a® <r <aft! and [,s > 0. Also, we have
(1, ~(I—1,s ~(1,5—1) ~(1-1,5-1)
(31)  [giem -3 Em -l e m + 8l TV € m)|
< Cw+1)? |9l

Thus, by interpolation between (2.33) and (2.34) with 0 < e = < 1, we get

w+1

~(1, ~(l—1,s ~(l,s—1 ~(l—1,s—1
0 Em =l € m el e m + L0 )|
< C (@ + D2 Q1 et (a) €157 sz (a5t nl 7.

On the other hand, we get (vi) as follows:

~(l,s ~(1 s—
U Ve m -3 )|

4 . dt d
S/ / )] Jeme € 1) S S do(u) do(v)
Sn—lxsm—1 I wX Ik w i r
) dt dr
SmeﬁU%Mﬂhl/ didr.
Ij,wXIk,w t T

Then, by change of variables, we obtain

(235) 307" m — 35k V)] < C (w+ D2 9l Jeus (a1 g,
where af, <t < a*! and [ > 0. In addition, we have

@36)  [lstem -l | < C w12 el

Finally, by interpolation between (2.35) and (2.36) with 0 < € = w%_l < 1,
we get

5 Em =500 TV €| < € @+ 1?19 e (@) €l
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By same procedure, we can obtain (vii). This ends the proof of Lemma
2.6. O

3. Proof of Theorem 1.2

Assume that Q € L(log L)?(S"~! x S™~!). By the same decomposition
introduced in [11], we shall decompose the function 2 as follows: For w € N, let
E,, be the set of points (2, ') € S*~! xS™~1 satisfying 2« < |Q(2',y')| < 2«1,
Also, we let Eg be the set of all those points (2/,y') € S*~1 x S™~! satisfying
", y)| < 2. For w € NU {0}, set b, = Qxg, and 6, = ||by|1. Set
D={weN:f,>23} and define the sequence of functions {0 Ywenuqoy
by

(31) QO(xay) = bO(ulv’U/) + Z bw(xlvyl)
w¢D

— /Sni1 bo(u',y")do(u') — / bo(z',v")do(v")

§m—1

-y </S b, (v, )do (W) + /Sm bw<x’,v’)da(v’))

w¢D

! /sSm (bo(u?v’) +2 Mu’w’)) do(u) do(v)

w¢D
and for w € D,

o) = 07 (00 = [ bulal o)
Sn—l
—|—/ bw(u’,v’)da(u’)da(v’)) :
S§n—1x§m—1
Thus, 2, satisfies the following:

Q' )do(u') = / Qu (-, 0" )do(v") =0,

7\/87717 by, (2, v")do(v")

1

Sn—l Sm—l
(3.2) 10l <4, [190]l2 < 4(a0)?,
(33) Q(m,y) = Z anw(xay)v
webhuo
(3.4) > (w12 by <19l Lgog Ly En-1 x5m 1),
webhuo
where 6y = 1. By (3.3), we get
(3.5) To,e,w(f) = Z 0w Ta,, o v(f)(2,y),

weDU0
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where
Q. (',
To, o uf = p.v./ flxz —@(lu))u',y — ¥(Jv])v") % dudv.
R™ xR™ |ul™ [v]
Therefore, by (3.4) and (3.5), our main goal is to show that
(3.6) | Te., o, v fllp < Cplw + 1)%[|fll,-
In fact, when € is replaced by €2, we can see
d+1,b
(3.7) To,euf(@y) =Y ol sy,
j, k€Z

where {OS:;’),C :0<1<d+1,0<s<b+1} is the sequence of measure defined
n (2.1)-(2.2). Notice that

1€ H““ < (4(an)?)* <O
and
1—
[Qull, < <4

Thus by (3.2), Lemma 2.5 and Lemma 2.6 with ¢ =2, cg111 = X and ¢pq12 =
a, we have for 0 <[ <d+1and 0 <s <b-+1 that

@) llo 52l < € (w+1)%

(i) [557.(6m)

<C(w+ 1)? |ery (ad,)! 11 €]72TFD | g (al)* sl | =20
R N () A ()
< C (w+ 1) et (@ H)E[TH [egn (ak)* sl |~ 7@
(iv) |0 Em) -5l Ve
<Cw+1)?2 |cll (af, ll!f’_”(i*l) ’cs,g(ak‘Irl 377|“%1'

v) As;m, m =l Em -l Ve m + 505 V)|

< O (w+1)? e (aft) €7 |eg o (al ) n|=+;

vi) [l m =580 e m)| < € @+ 1% (e ) )7
(vii) 205576 m =55k T € m] < € (w+ D2 Jesa(alt ) g7

)

We choose and fix a function ¢(t) € C§°(R) such that ¢(t) =1 for [t| < L
and ¢(t) =0 for [t| > 1. For j € Z and i € N, let gojz) be defined by

68 (t) = 6(((a0) 1)),
For 1 <l <d+1land 1 < s < b+ 1, we define the family of measures
{79 j, k € Z} by

(38) Tw 7 k(fa )
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:Agj)k(f 7]) H 1/’(1 |Cz1§| H 1/Jk |Cr277|)

I1<i<d+1 s<r<b+1

A(l,]:}cs (fa ) H wj(l)(‘cz,lﬂ H ¢ |C7«277|)

l—1<i<d+1 s<r<b+1

—sl e TI wP(ened  TT o Ueranl)

I<i<d+1 s—1<r<b+1

~(1-1,5—1 i

ol e T wPdened T o (eranh)
1-1<i<d+1 s—1<r<b+1

with the convention that [,y £; = 1, where () is the empty. It is worth noticing
that

A (d+1, N b N
AL ¢y = 61T (e, )—affle €S (Jeasr €])

5L (€ o (o 2n])

~ db d
+6L0 €M™ (Jeasn €DV (Jepsr2n])
(d+1 b+1) and o A(dﬂ b+1) have the

0-’.7

which implies that 7
equal to R xR™.

It is clearly that the measures {7, ;L( n)} satisfy:

same support that is

(3.9) I8l < € (w + 12,

~(l,s
7 m)|

< C@+1) lera (@) 11 €[5 ez (ab)* s pf "=,
~(1 s
Fhem =750 €|

_ 1
< C(w+1)? e (@) gz less (ag)” st 25CFD

70 705 €|

< C(w+1)? Jey (al) 1E]TTTED |, o(akF ) |7

Fhem =200 e =7l em + 2050 V)|

< C (w+ 1) e (adh)! §|““ |cs,a (alTh)® 77|“T17

[7lhem =750V Em)] < C @+ 1) fan (@) =,

w]k w]k

(3.10) "\(l ,8) (5 ,r]) A(l 1,5— 1)(5’77)’ <C (er 1)2 |Cs,2(af;+1)s77|m )
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Also, we can see that

d+1b+1 ” ( :
L d+1,b+1
(3.11) g g ijk =0,k .
=0 s=0

To see (3.11), we make use of the definition of 7 ﬂc in (3.8) and the fact
that Jg,’;)’)k =) —0forall0<I<d+land0<s<b+1. In fact, for

w,j,k
1<i<d+land1<s<b+1,let
A = T ¢(ened) TI i (leranl).
1<i<d+1 s<r<b+1
Then
d+1 b+1
> D TikEn)
=0 s=0
d+1 b+1
= D> A&
=1 s=1
d+1 b+1 d+1 b+1
l,s s ~(l—1,s s
= S50 (@At (e m) — 3056 (€ a1 (g, )
=1 s=1 =1 s=1
d+1b41 d+1 b+1
=33 el EmAt e + 30 60T (6 mAT T (6 )
=1 s=1 =1 s=1
d+1 b+1 d b+1
A~ l s ~ l,. s
= 336l mat g n) - D360 € mat (¢ )
=1 s=1 1=0 s=1
d+1 b d b
D9 WTHECIIES 9 SEIVECH )
=1 s=0 1=0 s=0
L (d+1,b+1
= U (€ AL (¢ )
(d+1,b+1 7 r
=5l D e [T Uesn € TT 07 (leranl)
i€ red
L (d+1,b+1
= 0(7:k " )(67 )
Thus,
d+1 b+1
l,s
To.w.0,f(x,y) = ) T
§,kE€EZ 1=0 s=0
d+1 b+1
= ok

=0 s=0 \j keZ
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which implies that

d+1b+1
(l,s
(3.12) ITe w0, flp <D 3 NTS 4 E b,
=0 s=0
where
wljskf ‘T y Z j k * f
7,kEZ
On the other hand, for ® € PE5(d), VP % () for some d, b > 0, let
Q. (-, v
Ao, (D) =swp| [ 6y —w(ohe) 200 )
kez |JItm) |v]
and
Mo, () 4@/,M—IW)) Bl ) 4|,
JEZ |ul
Then
(313) @S = swp | A+ S| = Aawe (D)),
J€
where

Mo w0, (f)(x,y)

/<m> /(m z = O(jul)u),y — W(|o)v)) (o )d(u)d(v) .

= ke ol

J,kEL
Since, Mo w0, (f) < Moo, (f) o My o, (f). Thus, by using Theorem 2.3, we
get
(3.14) IS (Dl < w0, (F) © Mu 0, ()l
< C W+ 12 fllp-

Hence, by (3.14) and an argument similar to that used in the proof of Lemma
8 in [2], we obtain

(3.15) 7Sk * gl <Clw+1)? 9551
J

J,kEZ 3,kEZ
p P

for arbitrary functions {gx ;} on RY x RM. Thus, by (3.9)-(3.10), (3.15) and
Theorem 2.4 with L;(§) = ¢x1 & and Qs(n) = cx,21m, we obtain

[N
[N

B16) ||z = | X ke A < Gt 121

,keZ
J p
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Finally, by (3.6), (3.7), (3.12) and (3.16), we get

(3.17) o awfll,=| D ol s |l < Cp(w+1)2If]p

i kEZ
J p

By (3.17), (3.12) and (3.4), the proof is complete.

4. Preparation for Marcinkiewicz integral operators

In this section, we shall set up the needed estimates to prove the LP bound-
edness of Mg ¢ w. Let {Q,} be the decomposition given in (3.1)-(3.4) with
(3.4) replaced by

(4.1) > W+ 1) 0y < 19|z 0g Ly -1 x5m-1)-

webuo
For A, (t',s') = {(u,v) € R" x R : |u| < al, and |v| < af }, we have
(4.2) Ma.owf(z,y)

7 ’ 2
=(w+1) (/ / ‘Ft' ) ,Y) a;Z(t +s)dt’dsl> 7
where

!/
F50 () (@, y) // Fla —d(jul)u,y — V(o)) — (1 W)L — ) qudo.
A7) |u" =1 o]
Thus, by (3.3), we have
(4.3) Moauf(z,y) <C > 6. Mo, suf(z,y),
webuUo
where Mg o v is given by (4.2) with 2 replaced by €. Define the family of

measures {U(dﬂ’bﬂ) 1, s € R} by

w,t’,s’

() Fe e

w,t’,s!

w4 // w(u) e +u(o g’y S0

T

and define {US7£’),S/ :0<1<d,0<5<b} by
(“5) a0 (Em)

(' 4s) // (R e 4Qu(wne) Lale'V) g g
I'(al] a8 |u‘n |U|m

Here, ['(a’, a®) = {(u, v)eR"me' al ! < |u| < al, and af "' < |v| < af}.

Notice that
~(0,0)  _ ~(0,b41) _ ~(d+1,0) _ 0

’ T ’ ’ - ’ ’
w,t’,s w,t’,s w,t’,s
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Thus, by (4.3)-(4.5), we have

Ma.ew(f)(z,y)

oo [e'e] 2 %
<C Z (w+1) 6, (/ / id::lsfﬁl) (f)(x,y)‘ dt’ d5/>

webU{0}

Therefore, to prove Theorem 1.3 we need to obtain the LP-norm of the operator
2 3
(4.6) H [l s | aras)
P

To this end, we have the following two lemmas:

(d+1,b+1)

Lemma 4.1. Let {0, ;" :t', s € R} be the measures given in (4.4). Then

@) oY) < o

wt’ s’
(i) [5Ulf e
< C pr (@l e T@DEID |y (af~Y) n| TOFDED;
(i) [5005 0 (€ m) = 3L L o)

w,t’ s’ w t’,s’
<C |Moi(a 5‘ aps(a S*I)n’_m;
(iv) aj;ttf’“(a n) = €|
<C|apitat e T ’awz(as')n‘ﬁ;
(v) UL e m) = 5D (e m) = U (6m) + 5L (6 m)
t’

< ClAp1(al) €155 |aspa(ag) | =51
. (d+1,b d,b) ’ 1
() [ 6. = 30, (6m)| < C el €75

(vii) 3L E6m) 5l (gm| < € |avalaz)n
where C is independent of w and (&,n) € (R™,R™).

_1
w1
b

Lemma 4.2. Let {a t/ ,:0<1<d,0< s <b} bethe measure given in
(4.5). Then
@ oSl < ¢
(i) [55).(6m)
<c|cu< L R e N PO (7 A U B
(i) [55) (6m) = 300 (€ m)
< C lauy (a)ig] s,z (ag1)® sl | "7
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. ~(l,s ~(l,s
() [6U36m - 580 € m)

1 1
T 21 (wt1) w+1

<C cll( ey Ccon(al)®n ;
~(l—1,s) ~(l,s—1 (I-1,5s—1
W) [0 & m =300 E6m =305 e m +3U Y )
<C\Cl1( )§|m|052(a8’)877\m;
o [ ~(ls ~(l-1,5— 4 1
(vi) [l (e m =500V e | < €l (al)) €15
1
. (I-1,s ~(l-1,5— s'\g | @t
(vi) wt,z?(& n) =l )| < C fessta) n| T
where C' is independent ofw and (¢,n) € (R™,R™).

Proof of Lemma 4.1 and Lemma 4.2. To prove Lemmas 4.1 and 4.2, we use
similar ideas as in the proofs of Lemma 2.5 and Lemma 2.6, but here we use
the property of 2, with ¢ = 2. We omlt details.

Now, we define the measures { wt/s, :0<1<d+1,0<s<b+1}as
in (3.8) with proper modifications of the involved measures. Therefore, the
following estimates hold:

(4.7) IS < €5

(48) R (€ m)] < C o LO T Jag o Qun)] T

(4.9) e — 7 €|

_1 1
< C w0 DUEITT [5,00 Q ()| 77170

(4.10) 7 em -7 )|

_ 1
< Clage Li(§)] 7 =D |w,s,sr Qs (M) <715

~(1,s (1 s (I,s ~(l—1,s—
(1) RO -7 m -7 Ve m + 7L Vi)

< Claww L@ =[5, Qu(n)] =T
~(l,s—1 ~(l—-1,s—1 1
‘ “()t/ 3/)(€ 77) LEIt' s/ )(5777)‘ < C |aw,l,t/ Ll(§)|w+1;

,8 PN ,5— _1
6 m = 2LV )] < C lawss Qun)| 7
and
d+1 b+1
(412) Z (l s)  __(d+1, b+1)7

wt/ /A wtll
=1 s=1
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where
A, l=d+1, an, s=b+1,
Li(§) = Qs(n) =
a € l#Fd+1, Csa?my, SEL+I,
pr(al™h), I=d+1, @o(as ™), s=b+1,
Ao, t = (agil)l’ I=d-1, Qy,s,5" = (aw/ 1), s=b-—1,
(af, ™), 1#d+1,d-1, (a1 s!, s#b+1b—1
d+1, I=d+1,
B =
l, l#£d+1,
and

5. — b+1, s=b+1,
s, s#b+ 1.

Thus, by (4.12), we obtain that

(4.13) Mo, o9 (f)(@,y)
d+1 b+1 2 3
Z Z (l s) % x ! S/
<Cl 1 s= 1(/ / Wt/ / f)( ,y))‘ ard )

Therefore, to prove (4.6), we need to obtain the L” boundedness of the operator

(4.14) (/ / D f)(a;,y))rdt’ds’)é

forall 1 < p < 0. ]

5. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let /\/lg’j’)§ be operators given by (4.14). By (4.13),
Minkowski’s inequality and (4.1), we need to prove that

IMEZ(N)lp < CplIF 1l

Qs
for 1 < p < oo and C, is independent of w. Now, choose two collections
of C* functions {w,(f)}kez and {W;(:)}kez on (0,00) satisfying the following
properties:

1
(5.1) supp(wy’) C {

?
Gyl k+1 Qu,lk—1

1 1

) )
Qy,s,k+1 Aw,s,k—1

] and supp(w,”)

0< w,il),w,gs) <1

(5.2) S a)w) =3 @) () =

keZ keZ
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drw,(cl)

drw,(:) C,
du” ()|

du” (W) < &

= ur

)

where () is independent of w. Define the measures {v,(cl) :k € Z} on R™ and
(v} k € Z} on R™ by

(W) (@) = @ (j21?) and (7)) = = (jy[?).

By (5.2), we immediately obtain

(53) 8 NEm =25 Em - Fen a0 - o)
JEL kEZ
A(l s) /\(l ~(s)
Tot!s 5 n) Lt/HJ ZULSfHk
JEZ kEZ

where [t'] is the greatest integer functions such that ¢/ —1 < |t'| < ¢/, similarly
for | s’] (see Al-Salman in [7,8]). Hence, by taking the inverse Fourier transform
for (5.3), we get

l,s s l,s
(5.4) (Tog)t/) c* f)(z,y) Z Z ( Vjyr)4s ® LS)Hk) * 7'0(J t,) c* fz,y).
JEZL k€EZ

Thus, by (3.3), (4.13), (5.4) and by Minkowski’s inequality, Mgi)c is dominated
as follows:

d+1 b+1
l,s l,s
(55 MG (Nay)<C Y w1, Y S SN 18 (), y),
weDU0 1=1 s=1 j€Z k€eZ
where
l,s
59 (F)(,y)
(/ / \_t’J+j ® UE?ch) w7 y)‘ dt’ dS')
Now, let

2 3
Sk (f </ / ULt’HJ ® UL?J-&-k) * f(z,y)’ at' dS/) .

Thus, by Littlewood-Paley theory in [28], we get

(5.6) 15k, (Dllp < ClIf [l
for 1 < p < oo and C is independent of w.

For p > 2, we take ¢ = (%)/' Then there exists g € LI(R™ x R™) with
llgll; <1 such that

l,s l s
= [ ([ |l @) =7 s s as)

lg(z,y)| dz dy.
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Now, by the Cauchy-Schwarz inequality and (4.7), we have
‘( E?’Jﬂ ® vf?]+k> * T(E) 45 X f(x,y)r

< 1ol (004 @02 ) ¥ 1@

Hence,

[IreOplE

l,s ( s
_/R R (/ / il *| Lt)’Ha@“Es?JM)*f(%y)gdt,ds/)
-

lg(z,y)| dx dy.

By definition of convolution and change of variables, we obtain

l,s
BT I

T ®) Lo *
= /anm /_OO /_Oo YLt +i ®ULZ’J+19) f(xvy)‘ dt' ds' ( th/ o (9))dzdy,

where (T(l’s) *(g)) has similar definition as in (3.13). Thus, by Hélder’s in-

’ ’
w,t’,s

equality, we get

l,s
1) ()12

s) 2 /
H/ / U'H’J LS/JJrk) * f(xay)‘ dt’ ds'

Cligllq 1Sk (Nllg < Cp lIF1I;

where the last inequality obtained by (3.14) and (5.6).
Next, we compute the L?-norm of 1) (f). We shall apply the same method

l *
|| 79 (9l

IA

IN

k,j,w
introduced by Al-Salman in [8]. By (5.1), we have
L 1 kHSJ 2 1 k+|s']
m<|§|<mvﬁ( )<m<ﬁ(aw ),
where
t, l#d+1, t, s#b+ 1.

Then, by applying #~! and make use of the fact that ¢’ — 1 < |[/| < t/, we get

t

b <aghomi(lg ™)

Qa

which implies that
t' <log, (a;* 207 ¢|™h).

Similarly, for the lower bound, we obtain

log,,, (a5 B~ (In|™1)) < t'.



SINGULAR AND MARCINKIEWICZ INTEGRAL OPERATORS 427

Similar argument can be applied for 7. Thus, define the intervals E,(Cl) and EJ(-S)
in R by
B () = [log, (abo ™ (1€ 71), log,,, (k207" (1¢] 7)) ;
B () = [log, (a8 (In] ™)), log,, (a8 (In~))] -

By similar argument as in [7] and [8], it can be verified that E,(j)(g) and E;S)(n)
satisfy the following:

)

EO©)] = 1B ()] = 3;
0(az 07" (1€]71) < 0(aly) < 0(az" 2071 (1€7));
Blaz?B7 (InI™") < Blal) < Blag? ™87 (In]™"))
for non-zero (£,n) € R™ x R™, (¢/,s') € E,(Cl)(f) X E§S) (n) and k,j € Z.
Now, for k> 3, t' € E(l)(g) and by (i) in Lemma 2.2, we get
(5.8) 0(al)) < 0(az* 07 (1g)
<a Mo
< a k3 e,

<
<

For k< -2,t € E,(Cl)(f), we get by (ii) in Lemma 2.2 that
(5.9) 6(al,™") > 0(az* 1071 (1€17)

> a MO0 (g 7))
> a7t g7
Similarly, we can obtain

(5.10) B(as) < a7 n|™' forj >3 and s € EJ(S)(n);

(5.11) B(af;_l) >a 7 p|7! for j < -2 and s’ € EJ(-S)(n).

Thus, by Plancherel’s theorem, we have

L,
uﬂju >|\%
= [ fenr ([ =00 w1 n P as) dear
"X

S/ FEmP? </ / 7 )Pt ds)dfdn.
]R"X]Rm ) ()

Thus, if k,j < —2, by (4.7), (4.8), (5.9) and (5.11) , we get
2 (kt1) 2(i+1)

(5.12) 152,13 < € al™ Xai(‘”“)/R . |F (& m)[Pde dny

ks+jl

< C ot / 7€, m)|2de dn.
R xR™
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Also, if k,j > 3, by (4.7), (4.11), (5.8) and (5.10), we get

2(—k+3) 2(=j+3)

1L (I3 < Caw ™™ ay =™ / (&, m)2de dn
R xR™

<co [ fenlacan

If k <-2,7>3 by (5.9), (5.10) and (4.10), we get

2(k+1)  2(—j+3)

l,s) w = -~
L) (£ < Cab™™ ap =™ / | F(&,m)[?dE dn
R™ xR™

. / | F(&,m)[2dg dn.
R” xR™

Similarly, for & > 3, j < —2, by (5.8), (5.11) and (4.9), we obtain

/ Fle.m) e d.
R xR™

ks+3

1, (F)ll2 < € 2
If -2 <k, 7 <3, we have

(5.13) 1) (Pl < © |F(&,m)[2dg dy.

R xR™

Hence, by combining all estimates in (5.12)-(5.13), we get

l.s
(5.14) 2 ()2 < Oy 1 Iz,
where

ks+jl

27, it kg < =2,
2757, ifk,j >3,

Or; =27, ifk<-2andj>3,
275 ifk>3and j < -2,
L, if k> —2and j<3.

Next, by interpolation between (5.7) and (5.14), we get

(5.15) I (Pl < 7005 11 £l

k,j,w
for 0 <y < 1and 1< p< co. Finally, by (5.5) and (5.15), we have

d+1 b+1

IME (Dl < C DD DT DT L(f)

=1 s=1j€Z kel
< Ol Laog) L(sn—1 xsm-1) [1f llp-
This completes the proof.
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