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ON SOME NEW NONLINEAR DELAY AND WEAKLY
SINGULAR INTEGRAL INEQUALITIES

QING-HUA MA AND L.DEBNATH

ABSTRACT. This paper deals with some new nonlinear delay and weakly
singular integral inequalities of Gronwall-Bellman type. These results gen-
eralize the inequalities discussed by Xiang and Kuang [19]. Several other
inequalities proved by Medved {15] and Ou-Iang [17] follow as special cases
of this paper. This work can be used in the analysis of various problems
in the theory of certain classes of differential equations, integral equations
and evolution equations. A modification of the Ou-lang type inequality
with delay is also treated in this paper.
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1. Introduction

Integral inequalities play a vital role in the study of many differential and
integral equations and their applications. In recent years, considerable atten-
tion has been given to various generalizations, extensions and refinements of
integral inequalities by many authors. In particular, the Gronwall-Bellman in-
equality and new nonlinear delay and weakly singular integral inequalities of
Gronwall-Bellman type have received a special attention by many authors in-
cluding Cheung and Ma [4-5], Lipovan [8, 9], Ma and his collaborators [10-14],
Medved [15-16], Tartar [18], Xiang and Kuang [19] for the investigation of dif-
ferential, integral and evolution equations.

In order to investigate the optimal control problem for a class of delay systems,
Xiang and Kuang [19] have considered two useful linear integral inequalities with
delay and singularity as follows:
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la(®)l <a+b /0 la(s)]ds + ¢ / leslcds,  0<t<T,

z(t) = (2), r<t<o, ) G
and
T a t —g)f-1 t T s
le()] < +b/0 (t—s) ||x<s>uds+c/0 lzsllods, 0<t<T,
o(t) = w(t), r<t<o, | 3%

The main purpose of this paper is to generalize inequalities (1.1) and (1.2)
to more general nonlinear integral inequalities that can be used as an effective
tool compared to other available inequalities in the literature. In other words,
some new nonlinear delay and weakly singular integral inequalities of Gronwall-
type are proved in this paper. These results are extensions of delay and weakly
singular inequalities discussed by Xiang and Kuang [19]. In addition, several
other inequalities proved by Medved [15] and Ou-lang [17] follow as special
cases of results in this paper.

2. Main result

Throughout this paper, let X and Y be two Banach spaces, £(X,Y) denote
the space of bounded linear operators from X to Y. Particularly, £(X) =
L(X, X) whose norm is denoted by | - |z. Suppose >0, T >0 and I = [0,T].
Let C([-r,a], X) be the Banach space of continuous functions from [—r, a] to
X with the usual supremum norm. If @ = 0, this space is simply denoted by C
with its norm denoted by || - ||c. Obviously, for any 2 € C([—r,T],X) and t € I,
we define z:(0) = z(t + 6) for r < 6 < 0 so that z; € C.

Theorem 2.1. Let ¢ € C, a(t), b(t), c(t) and w(t) € C(I,Ry). Let a(t) and
w(t) be nondecreasing with w(t) > 0 fort > 0. Let x € C([—r,T|, X) and satisfy
the following inequality:

t

lz@®)]| < alt) + /O b(s)w(||lz(s)l)ds + /0 c(s)|zsllcds, 0<t<T, (2.1)
z(t) = ¥(1), —7 <t <0,

then
jo) <67 {@ [oxp ([ cts) (att + 1w [ cris)|

+exp ( /0 t c(s)ds) /0 tb(s)ds}, 0<t<Ty, (22

Gv) = /v: &i), v > >0, (2.3)

where
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G~ is the inverse of function G, and 0 < T1 < T is chosen so that the quantity
in the curly brackets of (2.2) is in the range of G.

Proof. We define a nonnegative and nondecreasing function u(t) by the right-
hand side of (2.1)

t

u(t) = a(t)+ /0 “bsu(le()l)ds + / e(8)laallods,  (24)
then
la(®)] < ult), 0<t<T (2.5)
Note that for 0 <t < T,

Izl = sup [zt +0)| < sup fz(r)|+ sup [lz(7)] < [[¥llc +u(t)- (2.6)
-r<0<0 ~r<7<0 0<r<t
Substituting (2.5) and (2.6) into (2.4) gives
¢ ¢
u(t) < dﬂ+£b®WWMMWB+AC®WMM+MQM& (2.7)
Setting
w0 = o+ [ dolbleds+ [ bapulut)ds
then inequality (2.7) can be written as
u(t) < at)+ /0 c(s)u(s)ds. (2.8)

Since u(t) is nondecreasing, by the Bellman inequality (see Mitrinovic et al.
[2]), it follows from (2.8) that

u(t) < (exp /Ot c(s)ds) (a(t)—%-/ot c(s)||z/)]]cds+/0t b(s)w(u(s))ds)(il.g)

We fix any positive number T (< T1), so that we obtain from (2.9) that

T N T t
u(t) < (exp | c(s)ds) (a(m [ eovlcds + [ b(s)w(u(s))ds>,

0<t<T.

Let € > 0 be an arbitrary small constant, we define a positive function v(t)
by
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0 (2.10)
T N T ¢
= (exp/0 c(s)ds) (a(T)+s+/0 c(s)”dz”ods—lr/o b(s)w(u(s))ds),
0<t<T.
Then
ut) < o), 0<t<T. (2.11)

By differentiation, we derive from (2.10) and (2.11) that

T
% < (exp/o c(s)ds) b(t)w(v(t)),

v T
dG(v(t)) = % < (exp/o c(s)ds) b(s).

Integrating both sides of the last inequality yields

T N T
G@) < G |:(exp/0 c(s)ds) (G(T)+E/() c(s)Hchds)]

~

+/Ot (exp /OT c(s)ds) b(s)ds.

Taking t =T in the last inequality and then letting ¢ — 0, we obtain

N z oz
G(T) < G[Gmé<mmﬂ(«ﬂ+é<mmmmﬁ]
T T
+/0 <exp/0 c(s)ds) b(s)ds.

Since T'c (0,T1] is arbitrary, it follows from (2.11) and the last inequality that
ut) < o), 0<t<Th, (2.12)

ie.,

and

Gty < &[(ow [ ctris) (st + [ ctiivlons)

¢ ¢
+ (exp/ c(s)ds) / b(s)ds, 0<t<T,
0 0

or,
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) < {6 (o0 [ cris) (a0 + [ colvioas)]
+ (exp/ot c(s)ds) /Ot b(s)ds}, 0<t<Ty. (2.13)

Using (2.5) and (2.12)-(2.13), we obtain

e < & {6 (e [ ctos) (at + [ lowitons)]
+ <exp /0 tc(s)ds) /0 tb(s)ds}, 0<t<Ty(2.14)

In view of (2.1), inequality (2.14) also holds when t = 0. (i

Remark 1. (i) Under the hypotheses of Theorem 2.1, if w € Hy (see Dan-
nan [6]), i.e., there is a nonnegative continuous function ¢ such that w(uv) <
@(uw)w(v) for u, v > 0, we can get a sharper estimation to ||z(t)| as follows:

w01 < (o [ eris) 6 o (a+ | a(svlods) (215)
+ /O b(s) exp (— /0 ’ c(T)dT> p (exp /0 ’ c(T)dT) ds} 0<t<T,

where G and G~! are defined as in Theorem 2.1, and 0 < 7T} < T is chosen so
that the quantity of the curly brackets in (2.15) in the range of G.

(i) When w(u) = u, a(t) = a, b(t) = b and c(t) = ¢, by (2.15), we can get the
result of Lemma 1.1 of Xiang and Kuang [19].

Theorem 2.2. Let a(t), b(t), c(t) and ¢(t) be as in Theorem 2.1. Let w €
CY(R4, Ry) withw’ nondecreasing and w'(u) > 0 for v > 0. Ifz € C([-r, T}, X)
satisfies the following inequality

wllz@)| <€ a( / b(s)w' (||lz(s)]) ds
X [w (“x(s)l[)ds-{—/o c(s) ||:L'3HC] ds, (2.16)
0<t<T,
z(t)=P(t), —T<t<0,

then

et 5 67 { foxp ([ eto)is) (w4 + Wl [ eto)is)|

+exp (/Ot c(s)ds) /(: b(s)ds} , 0<t<Ty, (2.17)
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where G and G~! are defined as in Theorem 2.1, w™" is the inverse function of
w and 0 < Ty < T is chosen so that the quantity in the curly brackets of (2.17)
is in the range of G.

Proof. Let € > 0 be an arbitrary small real number. Fixing any positive number

~

T (< T3), we define a positive nondecreasing function u(t) by

w(u(t)) = a(T) + ¢+ /0 o (Iz($)l) (s)w(llz()) + e(s)llzslic] ds,

0<t<T. (2.18)

Then ~
@ < wu(t), O0<t<T. (2.19)

By differentiation, we derive from (2.18) and (2.6) that

W'(U(t))z—? = (=) bEwiz@) + c®)llz:c]
< W@ PEw(lu@l) + c@u®) + c@ll¥lc],
% < bRw(llu®) + c()u(t) + c(t)llvllc

since u(t) > 0 for 0 < ¢ SIN“, w' is nondecreasing with w > 0 for v > 0 and (2.19)
holds.
Integrating the both sides of the last inequality from 0 to t, we obtain

ut) < WM a(T +e) + /O b(s)w(llu(s)l)) + cls)u(s) +cs) ¥l c] ds,

0<t<T. (2.20)

Using procedure similar to (2.7) and (2.14) as stated in the proof of Theorem
2.1, we can derive from (2.19) and (2.20) that

et <6 {e [enp | t e(9as ) (1~ att) + vl | t e(sas) |

5 t
+exp (/ c(s)ds) / b(s)ds} , 0<t<T, (2.21)

0 0
By (2.16), (2.21) also holds when t = 0. O

Remark 2. By choosing suitable function w in Theorem 2.2, we can obtain
some useful and interesting inequalities. For instance, let w = u? (p > 1is a
constant) in Theorem 2.2 inequality (2.16) is a new class of Ou-Iang [17] delay
inequality which is different from the delay inequalities discussed in [4, 8-11] and
[13].
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We next use a modification of Medved’s [15] method to study a class of new
delay integral inequalities with weakly singular and delay which are nonlinear
extension of (1.2). For convenience, we cite one definition and two Lemmas from
Ma and Yang [12] as follows:

Definition. One ordered nonnegative real numbers [z, y, 2] belongs to the first
class distribution and denoted by [z,y,2] € Hy, if z € (0,1], y € (3,1) and z >
% —1; and it is called the second class distribution and denoted by [z, y, 2} € Ha,
ifze(0,1),ye (0,5 and z> (1 - 242)/(1 - ¢?).

Lemma 2.1. Let o, 3, v and p be positive constants, then
t 9 _
/ (ta - Sa)p(ﬁ-—l) Sp(’y_l)ds = E“ B [P_____(’)’ ‘1_) 1 ,p(ﬁ - 1) , 1 > 0;
0 (o4 (8]
where B[, n)] is the Beta function defined by
1
Bl¢,n) = / 5711 — 5)""tds (RE > 0, Ry > 0)
0

and 0 =pla(f—1)+vy—-1]+ 1L

Lemma 2.2. If positive real numbers o, 3, v, p1 and py satisfy
(1) |, B,7] € Hi,p1 = 1/6; or
(”) [a,,@, ’Y] € H2ap2 = (1 + 413)/(1 + 3ﬂ), then we have

B [?Eﬁ‘a—”ﬂ,pi(ﬁ—l)+1 € (0, +c0)

and 6; =pla(f~1)+v-14+12>0 fori=1,2.

Theorem 2.3. Suppose that functions a(t), b(t), c(t), ¥(t) and w(t) are defined
as in Theorem 2.1. If x € C([—r,T], X) satisfies the following inequality:
)

o (t)] < ae) + /0 (£ ~ )31 (s)w(|a(s) ) ds

+/t(t°‘ — )17 le(s) ||z fleds, 0<t<T, } (2.22)
0

z(t) = ¥(t), -7 <t<0. )
Then, we have
(7') 1’f [a’ ;877] € Hl)
u(t) <{G7![G1(A1(t) exp Ci(t)) + By (t) exp Cy (t)]}l“’ , t€[0,T3],(2.23)

where
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7 / b_ﬁ )ds,

Cit) = 6757 m;~? (15)/0 cm(s)ds,
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o
—
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o~
~
I
w
T
Wi

(] dé‘
Git) = | ——= u>u >0,
0 0T (E179)

1 +v-128-1 - _
mi(t) = aB [ﬂ 0?;3 , ﬁﬂ ]t[a(ﬂ D+B+y-11/8

where G7! is the inverse of G, and 0 < T3 < T is chosen so that the quantity
in the square brackets of (2.23) is in the range of G1;
('L’L) 'tf [a;ﬂa 7] € H2; then

t) <{G5 " [G2(Aa(t) exp Ca(t)) + Ba(t) exp(b(t)]}m%", t €[0,Ty], (2.24)
where

As(t) S0 + 9llo” Cal),

Bo(f) = 3”;3" ) / b5 (5)ds,

1438
—p

1l
oo

Ca(t)

I
o

A m2" (t)/ cﬁﬁ%(s)ds
0

v d
Ga(t) = /W§‘T,UZUO>O,
Vo ’LUTEW
11+4p) -8 4F°

= = le(1+48)(B-1)+v(1+45-0]/ (1+35)
m2(t) a { Oé(1+3ﬂ) 1438 )

and G5! is the inverse of G, and 0 < Ty < T is chosen so that the quantity in
the square brackets of (2.24) is in the range of Ga.

Proof. To prove (i) and (ii) we introduce the following indices: if [, 8,v] € H1,
1446 1448

l—m, 2= "5, where

1 .
let p1 = “ﬂ', @i = i if [0, 0,7] € Ha, let pp =

_1 .
p; =1 (1=1,2).
Usmg Hélder’s inequality with indices p; and g;, we obtain from (2.22) that

=)l <a(t) + [ / (1 — sp B gnia-D) ds] s

[ monera) s ([

1/qi
) },OStST.
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By Lemmas 2.1 and 2.2, the last inequality can be rewritten as

la(®)l <at) + {.j;B [m_——a}ﬁ_{ -1 1] tf}l/m

x [( [ (s)wq%nw(s)nds)w ([ c%(s)ﬂacsn%ds)l/qi} o<i<T,

(2.25)
where the value of Beta function B is positive and 8; = pla(8—1)+v—1] +1
is nonnegative.

Setting

mz(t) = -

1 B[p¢(7—1}+1
« 6]

(B ~1)+ 1} t%, (2.26)

and using the following well known consequence of the Jensen inequality,
(Ki+ Ko+ +Kp)" < 2" K]+ K} +---+K7), (2.27)

where n is a positive integer, r > 1, K1, K», : -+, K, are nonnegative constants,
we obtain from (2.25) that
(lz(e)|*
o t t 4
<37 [an () + o) ([ o0 letas + [ e(olalgas) .
0 0
(2.28)

By (2.6) and using (2.27) again, we obtain
lzsllE < 297 (lE + ll=(s)1) - (2.29)
Substituting (2.29) into (2.28) gives

2@l < [Ai(t)+3‘“"1m§-“/’"(t) /0 bq"(S)wq*(Ilw(S)ll)]

t
00t () [ e (o)aads, (230

where

i
A = 7 (@) + 20 [ e ds)
0

Since the function in the square brackets of (2.30) and 6%~'m&/P (1) are
nondecreasing, using a generalized Bellman inequality in Dannan [6] to (2.30),
we obtain

@ < [Ai(t>+3%—1m3"/’”<t> / b‘ﬁ(s)w%(um(s)m} exp Cy(£)(2.31)

1]
where Cy(t) = 6%~ 1m/? (t)/ c%(s)ds.
0
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Let ¢ > 0 be an arbitrary small constant and fix any positive number #; €
(0, Ti12]. Since A;(t),C;(t) and m;(t) are nonnegative and nondecreasing, it
follows from (2.31) that

lz@®)] < Z/%), telo,H], (2.32)

where
Zi(t)= [Ai(fi) +e+ 3‘1"_1mg"/”"(5i)/0 b% (s)wq‘(||:c(s)||)] exp C;(t;). (2.33)

By differentiation and use of (2.32), we derive from (2.33) that
PO < (antm (1) exp O 00 (B (2% (1),
or,
dz;(t)
w(Z;%(1)
Integrating both sides of the last relation from 0 to ¢, by the definition of G;,
and in view of Z;(0) = (A;(%;) + €) exp C;(t;) from (2.33), we have

Gi(Zi(t)) < Gil(Ai(t:) +¢) exp Ci(ti)]

1
+3% I /P4 (1) (exp Cy(%:)) / b%(s)ds, € [0,E].
4}

INA

GWM£m@nma@»wm.

Taking t = ¢; in the last inequality and then letting € — 0, we obtain
i
Gi (Zz (t)) S Gz[Az (fz) exp C,L (Zz)] + 3qi_1mgi/pi (fi)(exp CZ (Zz)) / bQi (S)dS.
0
Since t;— € (0, T;i + 2] is arbitrary, from the last relation and (2.32) we obtain

Gi(Zi(t)) < Gi|Ai(t) exp Ci(t)] + 3‘“_1mgi/m (t)(exp C’i(t))/0 b%(s)ds, (2.34)
te (Oa Ti+2]
Zi(t) <Gt [Gi[Ai(t) exp Ci(t)] + 3‘“'1mf"/m (t)(exp Ci(t))/o bqi(s)ds] {2.35)
t € (0, Tise],
and
lz@®) < 2Z7%t),  te(0,Tial. (2.36)
Hence, by (2.35) and (2.36), we have
Izt < Gt [Gi[Ai(t) exp C;(t)] + 3‘1"_1m;“/p" (t)(exp C'z-(t))/0 b% (s)ds} (2.37)

te (Oa Ti+2]'
In view of inequality (2.22), (2.37) also holds when ¢ = 0.
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Finally, considering two situations for i = 1,2 and using parameters ¢, 3 and
~ to denote p;, g; and 6; in (2.37), we can get the desired inequalities (2.23) and
(2.24), respectively. O

Remark 3. In Theorem 2.3, letting a(t) = a, b(t) = b, ¢(t) = c(a, b and c are
constants), & = v = 1 and w(u) = u, then it follows result of Lemma 1.2 of
Xiang and Kuang [19].
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