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EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR
IMPULSIVE DIFFERENTIAL EQUATIONS WITH INTEGRAL

BOUNDARY CONDITIONS

Chunmei Miao a, ∗, Weigao Ge b and Zhaojun Zhang c

Abstract. In this paper, we study the existence of positive solutions for singular
impulsive differential equations with integral boundary conditions





u′′(t) + q(t)f(t, u(t), u′(t)) = 0, t ∈ J′,
∆u(tk) = Ik(u(tk), u′(tk)), k = 1, 2, · · · , p,

∆u′(tk) = −Lk(u(tk), u′(tk)), k = 1, 2, · · · , p,

u(0) =

∫ 1

0

g(t)u(t)dt, u′(1) = 0,

where the nonlinearity f(t, u, v) may be singular at v = 0. The proof is based on
the theory of Leray-Schauder degree, together with a truncation technique. Some
recent results in the literature are generalized and improved.

1. Introduction

Impulsive differential equations are basic instruments to study the dynamics of
processes that are subjected to abrupt changes in their states. Recent development
in this field has been focused by many applied problems, such as control theory [8,9],
population dynamics [19] and medicine [4,5]. For the general aspects of impulsive
differential equations, we refer the reader to the classical monograph [14].

During the last two decades, impulsive differential equations have been studied by
many authors [1-3, 10, 13, 15-16, 20-25]. Many of them are on impulsive differential
equation boundary value problems (BVPs for short). In recent years, there have
been many studies related to impulsive multi-point boundary value problems [6-7,
11-12, 17, 26]. They include three, four, multi-point impulsive BVPs and impulsive
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BVPs with integral boundary conditions. However, very few papers consider singular
impulsive differential equations with integral boundary conditions.

In [2], using the Schauder’s fixed point theorem, Agarwal et al. investigated the
existence of at least one positive solution for singular BVPs for first and second order
impulsive differential equations. In [18], using the Schauder’s fixed point theorem,
Miao et al. studied a singular BVP with integral boundary condition for a first-order
impulsive differential equation. Motivated by [2], we extend the results in [18] to a
second order singular impulsive differential equation. In this paper, we consider the
following singular impulsive BVP

(1.1)





u′′(t) + q(t)f(t, u(t), u′(t)) = 0, t ∈ J′,
∆u(tk) = Ik(u(tk), u′(tk)), k = 1, 2, · · · , p,

∆u′(tk) = −Lk(u(tk), u′(tk)), k = 1, 2, · · · , p,

u(0) =
∫ 1

0
g(t)u(t)dt, u′(1) = 0,

where 0 < t1 < t2 < · · · < tp < 1, J′ = J \ {t1, t2, · · · , tp}, J = [0, 1], ∆u(tk) denotes
the jump of u(t) at t = tk, i.e., ∆u(tk) = u(tk +0)−u(tk−0), u(tk +0) and u(tk−0))
represent the right and left limits of u(t) at t = tk, ∆u′(tk) denotes the jump of u′(t)
at t = tk, i.e., ∆u′(tk) = u′(tk + 0)− u′(tk − 0), u′(tk + 0) and u′(tk − 0)) represent
the right and left derivative of u(t) at t = tk. We are mainly interested in the case
that f(t, u, v) may be singular at v = 0.

The method used in this paper mainly depends on the theory of Leray-Schauder
degree. We first consider the existence of positive solutions for a constructed nonsin-
gular BVP. Then, using Arzelà-Ascoli theorem, we obtain positive solutions for the
singular problem that is approximated by the family of solutions to the nonsingular
BVPs.

The following hypotheses are adopted throughout this paper:
(H1) q ∈ C[J], q(t) > 0, t ∈ (0, 1), f : J× [0,∞)× (0,∞) → (0,∞) is continuous,

Ik, Lk : [0,∞) × [0,∞) → [0,∞)(k = 1, 2, · · · , p) are continuous, g ∈ L1[J], g(t) ≥
0, t ∈ J and 0 ≤ σ :=

∫ 1
0 g(t)dt < 1.

(H2) f(t, u, v) ≤ h(u)[f1(v)+f2(v)], (t, u, v) ∈ J×[0,∞)×(0,∞), where f1(u) > 0
is continuous, nonincreasing on (0,∞); h(u), f2(u) ≥ 0 are continuous on [0,∞).

(H3) For any given constants K > 0, N > 0, there is a constant γ ∈ [0, 1) and a
continuous function ψK,N : J → (0,∞) such that f(t, u, v) ≥ ψK,N (t)uγ , (t, u, v) ∈
J× [0,K]× (0, N ].



POSITIVE SOLUTIONS FOR SINGULAR IMPULSIVE DIFFERENTIAL EQUATIONS 149

(H4)
∫ 1
0 q(t)f1(ρ(t))dt < ∞, where ρ(t) :=

∫ 1
t sγq(s)ψK,N (s)ds, for any K, N > 0.

(H5)

sup
c∈(0,∞)

(1− σ)c

p∑
k=1

max
u,v∈[0,c]

Ik(u, v) + Γ−1(

p∑
k=1

max
u,v∈[0,c]

Lk(u,v)

f1(c) + max
u∈[0,c]

h(u)
∫ 1
0 q(t)dt)

> 1,

where Γ(µ) :=
∫ µ

0

1
f1(z) + f2(z)

dz, µ > 0.

2. Preliminaries

For convenience, we first give some notations:
(1) J0 = [0, t1], Jk = (tk, tk+1], k = 1, 2, · · · , p− 1, Jp = (tp, 1].
(2) PC1[J] = {u : J → R | u′(t) is continuous in J′ and there exist u′(tk − 0) =

u′(tk), u′(tk + 0) < ∞(k = 1, 2, · · · , p)}.
Obviously, (PC1[J], ||u||PC1) is a Banach space with the norm ||u||PC1 = max{||u||,

||u′||}, here ||u|| = sup
t∈J

|u(t)|. (PC1[J], ||u||PC1) is abbreviated as PC1[J].

Definition 2.1. We say a function u ∈ PC1[J] is a positive solution to problem
(1.1) if u satisfies (1.1) and u(t) > 0, t ∈ (0, 1).

Definition 2.2 ([14]). A set S ⊂ PC1[J] is said to be quasiequicontinuous if for all
u ∈ S and ε > 0, there exists δ > 0 such that s, t ∈ Jk(k = 1, 2, · · · , p) and |s−t| < δ

implies
|u(s)− u(t)| < ε and |u′(s)− u′(t)| < ε.

We present the following result about relatively compact sets in PC1[J] which is
a consequence of the Arzelà-Ascoli Theorem.

Lemma 2.3 ([14]). A set S ⊂ PC1[J] is relatively compact in PC1[J] if and only if
S is bounded and quasiequicontinuous.

Lemma 2.4. Suppose that e ∈ L1[J], e(t) > 0, t ∈ (0, 1), ak, bk ≥ 0 (k =
1, 2, · · · , p), a ≥ 0 are constants. Then, BVP

(2.1)





u′′(t) + e(t) = 0, t ∈ J′,
∆u(tk) = ak, k = 1, 2, · · · , p,

∆u′(tk) = −bk, k = 1, 2, · · · , p,

u(0) =
∫ 1

0
g(t)u(t)dt, u′(1) = a
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has a unique solution. Moreover, this solution can be expressed by
(2.2)

u(t) =
∑
tk<t

ak +
p∑

k=1

G(t, tk)bk +
∫ 1

0
G(t, s)e(s)ds +

1
1− σ

[ ∫ 1

0
g(t)

∑
tk<t

akdt

+
∫ 1

0
g(t)

p∑

k=1

G(t, tk)bkdt +
∫ 1

0
g(t)

∫ 1

0
G(t, s)e(s)dsdt

]
+

∫ 1
0 tg(t)dt

1− σ
a,

where

G(t, s) =
{

t, 0 < t ≤ s < 1,
s, 0 < s < t < 1.

Proof. It is easy to verify that (2.2) is a solution of (2.1). On the other hand if u is
a solution of (2.1), then

u′′(t) = −e(t), t ∈ J′.

For any t ∈ Jk, k = 0, 1, 2, · · · , p, integrating on the both sides of the above equation
from 0 to t, one obtains

u′(t) = u′(0)−
∑
tk<t

bk −
∫ t

0
e(s)ds.

Using the boundary condition u′(1) = a, we have u′(0) =
∑

tk<1
bk +

∫ 1
0 e(s)ds+a, and

then

(2.3) u′(t) =
∑

t≤tk

bk +
∫ 1

t
e(s)ds + a.

Integrate on the both sides of (2.3) from 0 to t, and one obtains

(2.4) u(t) = u(0) +
∑
tk<t

ak +
∑
tk<t

bktk +
∑

t≤tk

bkt +
∫ t

0
se(s)ds +

∫ 1

t
te(s)ds + at,

Multiplying (2.4) with g(t) and integrating it from 0 to 1, we have

(2.5)

u(0) =
1

1− σ

[ ∫ 1

0
g(t)

∑
tk<t

akdt +
∫ 1

0
g(t)

∑
tk<t

bktkdt +
∫ 1

0
g(t)

∑

t≤tk

bktdt

+
∫ 1

0
g(t)(

∫ t

0
se(s)ds +

∫ 1

t
te(s)ds)dt

]
+

∫ 1
0 tg(t)dt

1− σ
a,
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and substituting (2.5) into (2.4) yields

u(t) =
1

1− σ

[ ∫ 1

0
g(t)

∑
tk<t

akdt +
∫ 1

0
g(t)

∑
tk<t

bktkdt +
∫ 1

0
g(t)

∑

t≤tk

bktdt

+
∫ 1

0
g(t)(

∫ t

0
se(s)ds +

∫ 1

t
te(s)ds)dt

]
+

∑
tk<t

ak +
∑
tk<t

bktk +
∑

t≤tk

bkt

+
∫ t

0
se(s)ds +

∫ 1

t
te(s)ds +

∫ 1
0 tg(t)dt

1− σ
a,

that is,

u(t) =
∑
tk<t

ak +
p∑

k=1

G(t, tk)bk +
∫ 1

0
G(t, s)e(s)ds +

1
1− σ

[ ∫ 1

0
g(t)

∑
tk<t

akdt

+
∫ 1

0
g(t)

p∑

k=1

G(t, tk)bkdt +
∫ 1

0
g(t)

∫ 1

0
G(t, s)e(s)dsdt

]
+

∫ 1
0 tg(t)dt

1− σ
a, t ∈ J.

The proof is complete. ¤
In order to solve (1.1), we consider the following BVP

(2.6)





u′′(t) + q(t)F (t, u(t), u′(t)) = 0, t ∈ J′,
∆u(tk) = Īk(u(tk), u′(tk)), k = 1, 2, · · · , p,

∆u′(tk) = −L̄k(u(tk), u′(tk)), k = 1, 2, · · · , p,

u(0) =
∫ 1

0
g(t)u(t)dt, u′(1) = a,

where F : J× R2 → (0,∞) is continuous, Īk, L̄k : R2 → [0,∞)(k = 1, 2, · · · , p) are
continuous, q, g are the same as in (H1), and a ≥ 0 is a constant.

Let u ∈ PC1[J]. We define an operator T : PC1[J] → PC1[J] by
(2.7)

(Tu)(t) =
∑
tk<t

Īk(u(tk), u′(tk)) +
p∑

k=1

G(t, tk)L̄k(u(tk), u′(tk))

+
∫ 1

0
G(t, s)q(s)F (s, u(s), u′(s))ds +

1
1− σ

[ ∫ 1

0
g(t)

∑
tk<t

Īk(u(tk), u′(tk))dt

+
∫ 1

0
g(t)

p∑

k=1

G(t, tk)L̄k(u(tk), u′(tk))dt

+
∫ 1

0
g(t)

∫ 1

0
G(t, s)q(s)F (s, u(s), u′(s))dsdt

]
+

∫ 1
0 tg(t)dt

1− σ
a.

We have the following result:
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Lemma 2.5. T : PC1[J] → PC1[J] is completely continuous.

Proof. It is easy to prove that T : PC1[J] → PC1[J] is well defined.
By the continuity of Īk, L̄k(k = 1, 2, · · · , p) and F , we have T is continuous.
Next we shall show that T is compact. Suppose B = {u ∈ PC1[J]| ||u||PC1 ≤

r} ⊂ PC1[J] is a bounded set. For any u ∈ B, which implies ||u|| ≤ r, ||u′|| ≤ r, we
have

||Tu|| ≤ 2− σ

1− σ

[ p∑

k=1

max
−r≤x≤r,−r≤y≤r

Īk(x, y) +
p∑

k=1

max
−r≤x≤r,−r≤y≤r

L̄k(x, y)

+ max
0≤s≤1,−r≤x≤r,−r≤y≤r

F (s, x, y)
∫ 1

0
q(s)ds

]
+

∫ 1
0 tg(t)dt

1− σ
a.

In addition,

||(Tu)′|| = max
t∈J

[ ∑

t≤tk

L̄k(u(tk), u′(tk)) +
∫ 1

t
q(s)F (s, u(s), u′(s))ds + a

]

≤
p∑

k=1

max
−r≤x≤r,−r≤y≤r

L̄k(x, y) + max
0≤s≤1,−r≤x≤r,−r≤y≤r

F (s, x, y)
∫ 1

0
q(s)ds + a

:= r0.

This implies that T (B) is uniformly bounded.
For any given ε > 0, t, s ∈ Jk(k = 0, 1, · · · , p) (without loss of generality, let

s < t), when t → s, we obtain

|(Tu)(t)− (Tu)(s)| =
∣∣∣∣
∫ t

s
(Tu)′(τ)dτ

∣∣∣∣ ≤ r0|t− s| → 0.

Additional,

|(Tu)′(t)− (Tu)′(s)| =
∣∣∣∣

∑

s≤tk≤t

L̄k(u(tk), u′(tk)) +
∫ t

s
q(s)F (s, u(s), u′(s))ds

∣∣∣∣

≤
∑

s≤tk≤t

max
−r≤x≤r,−r≤y≤r

L̄k(x, y)

+ max
0≤τ≤1,−r≤x≤r,−r≤y≤r

F (τ, x, y)
∫ t

s
q(s)ds

→ 0.

This implies that T (B) is quasiequicontinuous. By Lemma 2.3, T (B) is relatively
compact. Therefore, T is completely continuous. ¤

Now we state a existence principle, which plays an important role in our proof of
main results.
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Lemma 2.6 (Existence Principle). Assume that there exists a constant

R >

∫ 1
0 tg(t)dt

1− σ
a ≥ 0

independent of λ, such that for λ ∈ (0, 1), ||u||PC1 6= R, where u(t) satisfies

(2.8)λ





u′′(t) + λq(t)F (t, u(t), u′(t)) = 0, t ∈ J′,
∆u(tk) = λĪk(u(tk), u′(tk)), k = 1, 2, · · · , p,

∆u′(tk) = −λL̄k(u(tk), u′(tk)), k = 1, 2, · · · , p,

u(0) =
∫ 1

0
g(t)u(t)dt, u′(1) = a.

Then (2.8)1 has at least one solution u(t) such that ||u||PC1 ≤ R.

Proof. For any λ ∈ J, u ∈ PC1[J], define one operator

(2.9)

(Nλu)(t) = λ
∑
tk<t

Īk(u(tk), u′(tk)) + λ

p∑

k=1

G(t, tk)L̄k(u(tk), u′(tk))

+λ

∫ 1

0
G(t, s)q(s)F (s, u(s), u′(s))ds

+
λ

1− σ

[ ∫ 1

0
g(t)

∑
tk<t

Īk(u(tk), u′(tk))dt

+
∫ 1

0
g(t)

p∑

k=1

G(t, tk)L̄k(u(tk), u′(tk))dt

+
∫ 1

0
g(t)

∫ 1

0
G(t, s)q(s)F (s, u(s), u′(s))dsdt

]
+

∫ 1
0 tg(t)dt

1− σ
a.

By Lemma 2.5, Nλ : PC1[J] → PC1[J] is completely continuous. It can be
verified that a solution of BVP (2.8)λ equivalent to a fixed point of Nλ in PC1[J].
Let Ω = {u ∈ PC1[J]| ||u||PC1 < R}, then Ω is an open set in PC1[J]. If there exists
u ∈ ∂Ω such that N1u = u, then u(t) is a solution of (2.8)1 with ||u||PC1 ≤ R. Thus
the conclusion is true. Otherwise, for any u ∈ ∂Ω, N1u 6= u. If λ = 0, for u ∈ ∂Ω,

(I −N0)u(t) = u(t)−N0u(t) = u(t)−
∫ 1
0 tg(t)dt

1−σ a 6≡ 0 since ||u||PC1 = R >
∫ 1
0 tg(t)dt

1−σ a,
so N0u 6= u for any u ∈ ∂Ω. For λ ∈ (0, 1), if there is a solution u(t) to BVP (2.8)λ,
by the assumption, one gets ||u||PC1 6= R, which is a contradiction to u ∈ ∂Ω.

In a word, for any u ∈ ∂Ω and λ ∈ J, Nλu 6= u. Homotopy invariance of
Leray-Schauder degree deduce that

Deg{I −N1,Ω, 0} = Deg{I −N0, Ω, 0} = 1.
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Hence, N1 has a fixed point u in Ω. That is, BVP (2.8)1 has a solution u(t) with
||u||PC1 ≤ R. The proof is completed. ¤

Lemma 2.7. Suppose (H1) holds. If u is a solution to problem (2.6), then
(i) u(t) is concave on Jk(k = 0, 1, · · · , p);
(ii) u′(t) ≥ a, t ∈ J′, u′(tk − 0) ≥ u′(tk + 0) ≥ a, ∆u(tk) ≥ 0, k = 1, 2, · · · , p;

(iii) u(t) ≥
∫ 1
0 tg(t)dt

1−σ a and u(t) ≥ t||u||, t ∈ J.

Proof. (i) Because u(t) is a solution of problem (2.6), we have

u′′(t) = −q(t)F (t, u(t), u′(t)) < 0, t ∈ J′.

Therefore u′ is nonincreasing on J′, which implies u(t) is concave on Jk(k = 0, 1, · · · , p).
(ii) Since u′ is nonincreasing on J′, and u′(1) = a, therefore u′(t) ≥ a, t ∈

J′, u′(tk − 0) ≥ u′(tk + 0) ≥ a, ∆u(tk) ≥ 0, k = 1, 2, · · · , p.
(iii) From Lemma 2.4, we have for t ∈ J,

u(t) =
∑
tk<t

Īk +
p∑

k=1

G(t, tk)L̄k +
∫ 1

0
G(t, s)F (s, u(s), u′(s))ds

+
1

1− σ

[ ∫ 1

0
g(t)

∑
tk<t

Īkdt +
∫ 1

0
g(t)

p∑

k=1

G(t, tk)L̄kdt

+
∫ 1

0
g(t)

∫ 1

0
G(t, s)F (s, u(s), u′(s))dsdt

]
+

∫ 1
0 tg(t)dt

1− σ
a

≥
∫ 1
0 tg(t)dt

1− σ
a.

Because u(t) is concave, we have

u(t)
t

≥ u(1)
1

, t ∈ J,

thus u(t) ≥ t||u||, t ∈ J. ¤

3. Existence Results

In this section, we give the main results for BVP (1.1) in this paper.

Theorem 3.1. Suppose (H1)-(H5) hold, then BVP (1.1) has at least one positive
solution.

Proof. Step 1. From (H5), we choose M > 0 and 0 <
∫ 1
0 tg(t)dt

1−σ ε < M such that
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(1− σ)M

p∑
k=1

max
u,v∈[0,M ]

Ik(u, v) +Γ−1(
∫ ε
0

dz
f1(z)+f2(z) +

p∑
k=1

max
u,v∈[0,M ]

Lk(u,v)

f1(M) + max
u∈[0,M ]

h(u)
∫ 1
0 q(t)dt)

(3.1)

> 1.

Furthermore, we have

(3.2)
M

Γ−1(
∫ ε
0

dz
f1(z)+f2(z) +

p∑
k=1

max
u,v∈[0,M ]

Lk(u,v)

f1(M) + max
u∈[0,M ]

h(u)
∫ 1
0 q(t)dt)

> 1.

Let n0 ∈ {1, 2, · · · } satisfy that
1
n0

< ε, and set N0 = {n0, n0 + 1, n0 + 2, · · · }.
In what follows, we show that the following BVP

(3.3)





u′′(t) + q(t)f(t, u(t), u′(t)) = 0, t ∈ J′,
∆u(tk) = Ik(u(tk), u′(tk)), k = 1, 2, · · · , p,

∆u′(tk) = −Lk(u(tk), u′(tk)), k = 1, 2, · · · , p,

u(0) =
∫ 1

0
g(t)u(t)dt, u′(1) =

1
m

has a positive solution for each m ∈ N0.
To this end, we consider the following BVP

(3.4)





u′′(t) + q(t)f∗(t, u(t), u′(t)) = 0, t ∈ J′,
∆u(tk) = I∗k(u(tk), u′(tk)), k = 1, 2, · · · , p,

∆u′(tk) = −L∗k(u(tk)u′(tk)), k = 1, 2, · · · , p,

u(0) =
∫ 1

0
g(t)u(t)dt, u′(1) =

1
m

,

where

f∗(t, u, v) =
{

f(t, u, v), u ≥ 0, v ≥ 1
m ,

f(t, u, 1
m), u ≥ 0, v < 1

m ,

I∗k(u, v) =
{

Ik(u, v), u ≥ 0, v ≥ 1
m ,

Ik(u, 1
m), u ≥ 0, v < 1

m ,

L∗k(u, v) =
{

Lk(u, v), u ≥ 0, v ≥ 1
m ,

Lk(u, 1
m), u ≥ 0, v < 1

m ,

then f∗ : J× [0,∞)× R→ (0,∞), I∗k , L∗k : [0,∞)× R→ [0,∞), (k = 1, 2, · · · , p).
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To obtain a solution of BVP (3.4) for each m ∈ N0, by applying Lemma 2.6, we
consider the family of BVPs

(3.5)





u′′(t) + λq(t)f∗(t, u(t), u′(t)) = 0, t ∈ J′,
∆u(tk) = λI∗k(u(tk), u′(tk)), k = 1, 2, · · · , p,

∆u′(tk) = −λL∗k(u(tk), u′(tk)), k = 1, 2, · · · , p,

u(0) =
∫ 1

0
g(t)u(t)dt, u′(1) =

1
m

,

where λ ∈ J. Let u(t) be a solution of (3.5). From Lemma 2.7, we observe that u(t)
is concave on Jk(k = 0, 1, · · · , p), u′(t) ≥ 1

m , t ∈ J′, u′(tk−0) ≥ u′(tk +0) ≥ 1
m , k =

1, 2, · · · , p and u(t) ≥
∫ 1
0 tg(t)dt

1−σ
1
m , u(t) ≥ t||u||PC1 , t ∈ J.

For any x ∈ J′, by (H2), we have

−u′′(x) = λq(x)f∗(x, u(x), u′(x)) = λq(x)f(x, u(x), u′(x))

≤ q(x)h(u(x))[f1(u′(x)) + f2(u′(x))].

Multiply the above inequality by 1
f1(u′(x))+f2(u′(x)) and integrate it from t(t ∈ J)

to 1 yield that

∫ u′(t)

0

dz

f1(z) + f2(z)
≤

∫ 1
m

0

dz

f1(z) + f2(z)
+

p∑
k=1

max
u∈[0,u(1)],v∈[0,u′(0)]

Lk(u, v)

f1(u′(0))

+ max
u∈[0,u(1)]

h(u)
∫ 1

0
q(x)dx,

For any t ∈ J, we have

(3.6)
u′(t) ≤Γ−1

(∫ 1
m

0

dz

f1(z) + f2(z)
+

p∑
k=1

max
u∈[0,u(1)],v∈[0,u′(0)]

Lk(u, v)

f1(u′(0))

+ max
u∈[0,u(1)]

h(u)
∫ 1

0
q(x)dx

)

and

(3.7)
u′(0) ≤Γ−1

( ∫ ε

0

dz

f1(z) + f2(z)
+

p∑
k=1

max
u∈[0,u(1)],v∈[0,u′(0)]

Lk(u, v)

f1(u′(0))

+ max
u∈[0,u(1)]

h(u)
∫ 1

0
q(x)dx

)
.
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Integrate (3.6) from 0 to 1, and one obtains

(3.8)

(1− σ)u(1) ≤
p∑

k=1

max
u∈[0,u(1)],v∈[0,u′(0)]

Ik(u, v) + Γ−1

(∫ ε

0

dz

f1(z) + f2(z)

+

p∑
k=1

max
u∈[0,u(1)],v∈[0,u′(0)]

Lk(u, v)

f1(u′(0))
+ max

u∈[0,u(1)]
h(u)

∫ 1

0
q(x)dx

)
.

If u′(0) ≥ u(1), then ||u||PC1 = max{u(1), u′(0)} = u′(0). By (3.7) one obtains

u′(0)

Γ−1(
∫ ε
0

dz
f1(z)+f2(z) +

p∑
k=1

max
u,v∈[0,u′(0)]

Lk(u,v)

f1(u′(0)) + max
u∈[0,u′(0)]

h(u)
∫ 1
0 q(t)dt)

≤ 1,

which together with (3.2) implies

||u||PC1 = u′(0) 6= M.

If u′(0) < u(1), then ||u||PC1 = max{u(1), u′(0)} = u(1). By (3.8), we obtain

(1− σ)u(1)

p∑
k=1

max
u,v∈[0,u(1)]

Lk(u, v)+Γ−1(
∫ ε
0

dz
f1(z)+f2(z)+

p∑
k=1

max
u,v∈[0,u(1)]

Lk(u,v)

f1(u(1)) + max
u∈[0,u(1)]

h(u)
∫ 1
0 q(t)dt)

≤ 1,

which together with (3.1) implies

||u||PC1 = u(1) 6= M.

By Lemma 2.6, for any fixed m ∈ N0, BVP (3.4) has at last one positive so-
lution, denoted by um(t), and ||um||PC1 ≤ M . From Lemma 2.7, we note that

um(t) ≥
∫ 1
0 tg(t)dt

1−σ
1
m , t ∈ J, u′m(t) ≥ 1

m , t ∈ J′, u′(tk − 0) ≥ u′(tk + 0) ≥ 1
m .

So f∗(t, um(t), u′m(t)) = f(t, um(t), u′m(t)), I∗k(um(t), u′m(t)) = Ik(um(t), u′m(t)),
L∗k(um(t), u′m(t)) = Lk(um(t), u′m(t))(k = 1, 2, · · · , p). Therefore, um(t) is the so-
lution to BVP (3.3).

Step 2. By

(3.9)

0 <

∫ 1
0 tg(t)dt

1− σ

1
m
≤ um(t) ≤ M, t ∈ J,

0 <
1
m
≤ u′m(t) ≤ M, t ∈ J′,

0 <
1
m
≤ u′m(tk + 0) ≤ u′m(tk − 0) ≤ M, k = 1, 2, · · · , p,
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we conclude that

(3.10)
u′m(t) ≥ L

1
1−γ

∫ 1

t
sγq(s)ψM,M (s)ds := ϕ(t), t ∈ J0,

u′m(tk − 0) ≥ u′m(tk + 0) ≥ ϕ(tk), k = 1, 2, · · · , p.

where L > 0 is a constant.
In fact, (H3) guarantees the existence of a function ψM,M which is continuous on

J and positive on (0, 1) with

f(t, um(t), u′m(t)) ≥ ψM,M (t)uγ , t ∈ J, γ ∈ [0, 1).

By Lemma 2.4 and Lemma 2.7, one has
(3.11)

um(t) =
∑
tk<t

Ik(um(tk), u′m(tk)) +
p∑

k=1

G(t, tk)Lk(um(tk), u′m(tk))

+
∫ 1

0
G(t, s)q(s)f(s, um(s), u′m(s))ds+

1
1− σ

[ ∫ 1

0
g(t)

∑
tk<t

Ik(um(tk), u′m(tk))dt

+
∫ 1

0
g(t)

p∑

k=1

G(t, tk)Lk(um(tk), u′m(tk))dt

+
∫ 1

0
g(t)

∫ 1

0
G(t, s)q(s)f(s, um(s), u′m(s))dsdt

]
+

∫ 1
0 tg(t)dt

1− σ

1
m

≥
∫ 1

0
G(t, s)q(s)f(s, um(s), u′m(s))ds

+
1

1− σ

∫ 1

0
g(t)

∫ 1

0
G(t, s)q(s)f(s, um(s), u′m(s))dsdt

≥ t

∫ 1

0
sq(s)ψM,M (s)(um(s))γds +

∫ 1
0 tg(t)dt

1− σ

∫ 1

0
sq(s)ψM,M (s)(um(s))γds

≥ (um(1))γ [t
∫ 1

0
sγ+1q(s)ψM,M (s)ds +

∫ 1
0 tg(t)dt

1− σ

∫ 1

0
sγ+1q(s)ψM,M (s)ds],

= (um(1))γ(tL1 + L0), t ∈ J,

where L1 :=
∫ 1
0 sγ+1q(s)ψM,M (s)ds, L0 :=

∫ 1
0 tg(t)dt

1−σ

∫ 1
0 sγ+1q(s)ψM,M (s)ds. Further-

more, we have

um(1) ≥ (L1 + L0)
1

1−γ := L
1

1−γ ,

um(t) ≥ L
1

1−γ (tL1 + L0), t ∈ J.
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Because um(t) is a solution of (3.3), for s ∈ J′,

−u′′m(s) = q(s)f(s, um(s), u′m(s)),

and integrate it from t(t ∈ J) to 1, one obtains

u′(t) =
1
m

+
∑
t<tk

Lk(u(tk, u′(tk))) +
∫ 1

t
q(s)f(s, u(s), u′(s))ds

≥
∫ 1

t
sγq(s)ψM,M (s)ds(um(1))γ

≥ L
1

1−γ

∫ 1

t
sγq(s)ψM,M (s)ds = ϕ(t),

and then, we have

u′m(t) ≥ ϕ(t), t ∈ J0,

u′m(tk − 0) ≥ u′m(tk + 0) ≥ ϕ(tk), k = 1, 2, · · · , p,

Thus, (3.10) holds.
Step 3. It remains to show that {u(j)

m (t)}m∈N0(j = 0, 1) are both uniformly
bounded and quasiequicontinuous on J. By (3.9), we have {u(j)

m (t)}m∈N0(j = 0, 1)
are both uniformly bounded on J.

Next we need only to show that {u(j)
m (t)}m∈N0(j = 0, 1) are quasiequicontinuous

on J. By um(t) is the solution (3.3), for s ∈ J′, we have

−u′′m(s) = q(s)f(s, um(s), u′m(s)) ≤ q(s)h(um(s))[f1(u′m(s)) + f2(u′m(s))],

and by integrate it from t(t ∈ J) to 1, one obtains

(3.12) u′m(t) ≤ Γ−1

(
1

f1(M)
+

p∑
k=1

Lk(M, M)

f1(M)
+ max

u∈[0,M ]
h(u)

∫ 1

0
q(x)dx

)
.

For any t, s ∈ Jk(k = 0, 1, · · · , p),

|um(t)− um(s)| =
∣∣∣∣
∫ t

s
u′m(τ)dτ

∣∣∣∣

≤ Γ−1(
1

f1(M)
+

p∑
k=1

Lk(M, M)

f1(M)
+ max

u∈[0,M ]
h(u)

∫ 1

0
q(x)dx)|t− s|

→ 0 as t → s.
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By the conditions (H2) and (H4), one gets

|u′m(t)− u′m(s)| =
∣∣∣∣
∫ t

s
u′′m(τ)dτ

∣∣∣∣ =
∣∣∣∣
∫ t

s
q(τ)f(τ, um(τ), u′m(τ))dτ

∣∣∣∣

≤ max
u∈[0,M ]

h(u)
[ ∫ t

s
q(τ)f1(ϕ(τ))dτ + max

u∈[0,M ]
f2(u)

∫ t

s
q(τ)dτ

]

→ 0 as t → s.

Therefore, {uj
m(t)}m∈N0(j = 0, 1) are quasiequicontinuous on J.

The Arzelà-Ascoli theorem guarantees that there is a subsequence N∗ of N0 (with-
out loss of generality, we assume N∗ = N0) and functions u(j)(t)(j = 0, 1) with
u

(j)
m (t) → u(j)(t)(j = 0, 1) uniformly on J as m → +∞ through N∗. So u(0) =∫ 1
0 g(t)u(t)dt, u′(1) = 0, ||u||PC1 ≤ M , lim

m→∞um(tk + 0) = u(tk + 0), lim
m→∞u′m(tk +

0) = u′(tk + 0)(k = 1, 2, · · · , p), and u(t) ≥ L
1

1−γ (tL1 + L0), u′(t) ≥ φ(t), t ∈ J.
For t ∈ (tp, 1), by um(t)(m ∈ N∗) is the solution of (3.3) and Lemma 2.4, we have

(3.13) um(t) = −um(1) + u′m(1)(1− t) +
∫ 1

t
xq(x)f(x, um(x), u′m(x))dx.

Let m → +∞ through N∗ in (3.13), one has

u(t) = −u(1) + u′(1)(1− t) +
∫ 1

t
xq(x)f(x, u(x), u′(x))dx,

and furthermore, we have u′′(t) + q(t)f(t, u(t), u′(t)) = 0, t ∈ (tp, 1). Similarly, for
any t ∈ Jk(k = 1, · · · , p− 1), t ∈ (0, t1), one has u′′(t) + q(t)f(t, u(t), u′(t)) = 0.

Thus, we have




u′′(t) + q(t)f(t, u(t), u′(t)) = 0, t ∈ J′,
∆u(tk) = Ik(u(tk), u′(tk)), k = 1, 2, · · · , p,

∆u′(tk) = Lk(u(tk), u′(tk)), k = 1, 2, · · · , p,

u(0) =
∫ 1

0
g(t)u(t)dt, u′(1) = 0,

i.e. u(t) is positive solution of BVP (1.1), and ||u||PC1 ≤ M , u(t) ≥ L
1

1−γ (tL1 +
L0), u′(t) ≥ ϕ(t), t ∈ J. The proof of Theorem 3.1 is complete. ¤

4. An Example

In this section, we give an example to illustrate our results.
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Example 4.1. Consider the following BVP

(4.1)





u′′(t) + tu
1
2 (u′(t))−

1
5 = 0, t ∈ J′,

∆u(tk) = ck(u(tk) + u′(tk)), k = 1, 2, · · · , p,

∆u′(tk) = −dk(u(tk) + u′(tk)), k = 1, 2, · · · , p,

u(0) =
∫ 1

0
tu(t)dt, u′(1) = 0,

where 0 < t1 < t2 < · · · < tp < 1, ck, dk ≥ 0, k = 1, 2, · · · , p are constants and
p∑

k=1

ck = 1
2000 ,

p∑
k=1

dk = 1
2000 .

Conclusion. BVP (4.1) has at least one positive solution.

Proof. Obviously, q(t) = t, f(t, u, v) = u
1
2 v−

1
5 , g(t) = t, Ik = ck ≥ 0, Lk = dk ≥

0, k = 1, 2, · · · , p. σ =
∫ 1
0 tdt = 1

2 ∈ [0, 1), so (H1) holds.
Let

h(u) = u
1
2 , f1(v) = v−

1
5 , f2(v) = 0,

then (H2) holds. For any K, N > 0, choose ψK,N (t) = N− 1
5 and γ = 1

2 such that

f(t, u, v) = u
1
2 v−

1
5 ≥ N− 1

5 u
1
2 , (t, u, v) ∈ J′ × [0,K]× (0, N ],

thus (H3) holds.
By a direct calculation, we have

ρ(t) = N− 1
5

∫ 1

t
s

3
2 ds =

2
5
N− 1

5 (1− t
5
2 ),

and ∫ 1

0
q(t)f1(ρ(t))dt = (

2
5
)−

1
5 N

1
25

∫ 1

0

t

(1− t
5
2 )

1
5

dt ≈ 0.7206746604N
1
25 < ∞,

which implies that condition (H4) holds.
Next, we show that the conditions (H5) holds. In fact, because

sup
c∈(0,∞)

(1− σ)c

p∑
k=1

max
u,v∈[0,c]

Ik(u, v) + Γ−1(

p∑
k=1

max
u,v∈[0,c]

Lk(u,v)

f1(c) + max
u∈[0,c]

h(u)
∫ 1
0 q(t)dt)

= sup
c∈(0,∞)

1
2c

1
1000c + Γ−1( 1

1000c
6
5 + 1

2c
1
2 )

= sup
c∈(0,∞)

1
2c

1
1000c +

6
5

√
3

2500c
6
5 + 3

5c
1
2

> 30 > 1,
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then (H5) holds. Therefore, by Theorem 3.1, we can obtain that (4.1) has at least
one positive solution. ¤
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