• 제목/요약/키워드: singular finite element

검색결과 110건 처리시간 0.022초

REMARKS ON FINITE ELEMENT METHODS FOR CORNER SINGULARITIES USING SIF

  • Kim, Seokchan;Kong, Soo Ryun
    • 호남수학학술지
    • /
    • 제38권3호
    • /
    • pp.661-674
    • /
    • 2016
  • In [15] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution we could get accurate solution just by adding the singular part. This approach works for the case when we have the accurate stress intensity factor. In this paper we consider Poisson equations with mixed boundary conditions and show the method depends the accrucy of the stress intensity factor by considering two algorithms.

경계층을 가진 박판구조물의 유한요소 해석을 위한 체눈 디자인 (Mesh Design for the Finite Element Analysis of Thin Structures with Boundary Layers)

  • 조진래
    • 전산구조공학
    • /
    • 제9권4호
    • /
    • pp.165-172
    • /
    • 1996
  • 들보나 아치, 판재 그리고 쉘과 같은 박판구조물의 경계부근의 매우 좁은 영역에는 경계층이 존재하는데, 이 영역에서 해는 급격하게 변화하는 특이 거동을 나타낸다. 유한요소법을 이용하여 이러한 물체의 거동을 해석하는 경우, 이런 특이성을 묘사하기 위해 유한요소 체눈패턴이 대단히 중요한 역할을 한다. 이 논문은 경계층에 대한 이론적 해석과 최적의 체눈패턴을 형성하기 위한 가이드를 제시한다. 또한 이론적인 결과를 입증하는 예제도 소개하고자 한다.

  • PDF

A FINITE ELEMENT METHOD USING SIF FOR CORNER SINGULARITIES WITH AN NEUMANN BOUNDARY CONDITION

  • Kim, Seokchan;Woo, Gyungsoo
    • East Asian mathematical journal
    • /
    • 제33권1호
    • /
    • pp.1-9
    • /
    • 2017
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.

The structured multiparameter eigenvalue problems in finite element model updating problems

  • Zhijun Wang;Bo Dong;Yan Yu;Xinzhu Zhao;Yizhou Fang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.493-500
    • /
    • 2023
  • The multiparameter eigenvalue method can be used to solve the damped finite element model updating problems. This method transforms the original problems into multiparameter eigenvalue problems. Comparing with the numerical methods based on various optimization methods, a big advantage of this method is that it can provide all possible choices of physical parameters. However, when solving the transformed singular multiparameter eigenvalue problem, the proposed method based on the generalised inverse of a singular matrix has some computational challenges and may fail. In this paper, more details on the transformation from the dynamic model updating problem to the multiparameter eigenvalue problem are presented and the structure of the transformed problem is also exposed. Based on this structure, the rigorous mathematical deduction gives the upper bound of the number of possible choices of the physical parameters, which confirms the singularity of the transformed multiparameter eigenvalue problem. More importantly, we present a row and column compression method to overcome the defect of the proposed numerical method based on the generalised inverse of a singular matrix. Also, two numerical experiments are presented to validate the feasibility and effectiveness of our method.

A hybrid singular value decomposition and deep belief network approach to detect damages in plates

  • Jinshang Sun;Qizhe Lin;Hu Jiang;Jiawei Xiang
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.713-727
    • /
    • 2024
  • Damage detection in structures using the change of modal parameters (modal shapes and natural frequencies) has achieved satisfactory results. However, as modal shapes and natural frequencies alone may not provide enough information to accurately detect damages. Therefore, a hybrid singular value decomposition and deep belief network approach is developed to effectively identify damages in aluminum plate structures. Firstly, damage locations are determined using singular value decomposition (SVD) to reveal the singularities of measured displacement modal shapes. Secondly, using experimental modal analysis (EMA) to measure the natural frequencies of damaged aluminum plates as inputs, deep belief network (DBN) is employed to search damage severities from the damage evaluation database, which are calculated using finite element method (FEM). Both simulations and experimental investigations are performed to evaluate the performance of the presented hybrid method. Several damage cases in a simply supported aluminum plate show that the presented method is effective to identify multiple damages in aluminum plates with reasonable precision.

Numerically integrated modified virtual crack closure integral technique for 2-D crack problems

  • Palani, G.S.;Dattaguru, B.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • 제18권6호
    • /
    • pp.731-744
    • /
    • 2004
  • Modified virtual crack closure integral (MVCCI) technique has become very popular for computation of strain energy release rate (SERR) and stress intensity factor (SIF) for 2-D crack problems. The objective of this paper is to propose a numerical integration procedure for MVCCI so as to generalize the technique and make its application much wider. This new procedure called as numerically integrated MVCCI (NI-MVCCI) will remove the dependence of MVCCI equations on the type of finite element employed in the basic stress analysis. Numerical studies on fracture analysis of 2-D crack (mode I and II) problems have been conducted by employing 4-noded, 8-noded (regular & quarter-point), 9-noded and 12-noded finite elements. For non-singular (regular) elements at crack tip, NI-MVCCI technique generates the same results as MVCCI, but the advantage for higher order regular and singular elements is that complex equations for MVCCI need not be derived. Gauss numerical integration rule to be employed for 8-noded singular (quarter-point) element for accurate computation of SERR and SIF has been recommended based on the numerical studies.

Exterior Acoustic Holography Reconstruction of a Tuning Fork Using Inverse Non-singular BEM

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제22권1E호
    • /
    • pp.11-18
    • /
    • 2003
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near field pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used for the initial exterior pressures which are at first calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is, used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 ㎐ resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

역 비고유치 BEM을 사용한 소리 굽쇠의 외부 음향 홀로그래픽 재현 (Exterior Acoustic Holography Reconstruction of a Tuning Fork using Inverse Non-singular BEM)

  • 장순석;이제형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.306-311
    • /
    • 2002
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near Held pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used far the initial exterior pressures which are initially calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 Hz resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

  • PDF

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

시간적분형 운동방정식을 바탕으로 한 동적 응력확대계수의 계산 (Numerical Computation of Dynamic Stress Intensity Factors Based on the Equations of Motion in Convolution Integral)

  • 심우진;이성희
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.904-913
    • /
    • 2002
  • In this paper, the dynamic stress intensity factors of fracture mechanics are numerically computed in time domain using the FEM. For which the finite element formulations are derived applying the Galerkin method to the equations of motion in convolution integral as has been presented in the previous paper. To assure the strain fields of r$^{-1}$ 2/ singularity near the crack tip, the triangular quarter-point singular elements are imbedded in the finite element mesh discretized by the isoparametric quadratic quadrilateral elements. Two-dimensional problems of the elastodynamic fracture mechanics under the impact load are solved and compared with the existing numerical and analytical solutions, being shown that numerical results of good accuracy are obtained by the presented method.