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Abstract

Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM
code is then used to calculate unknown boundary surface normal displacements and surface pressures from
known exterior near field pressures. And then the calculated surface normal displacements and surface
pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The
initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the
same number of boundary surface nodes (1178) are used for the initial exterior pressures which are initially
calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is used for the calculation
of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 Hz
resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

Symbol Notification

{F}
{a}

Applied Mechanical Force
Elastic Displacement

[K ] Elastic Stiffness Matrix

[M] Mass Matrix
@  Angular Frequency
Py Fluid (Air) Density

Normal Displacement on the Structural Surface

an
k  Wave Number (= /c)
¢ Sound Speed in Air; 340 [m/sec]

ng Number of Surface Nodes
nt Number of Surface Elements
{a} Displacement Vector on the Structural Surface

¥} Pressure Vector on the Structural Surface
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{\P f} Near/Far Field Pressure Vector

1. Introduction

Electro-mechanical devices such as motor and engine
generate sound with noise. Unless the noise-like sound is
non-stationary, it is possibly easier to find where is the
origin of the noise. The stationary noise source may be
pointed out by an acoustic holographic technique in
which an array of microphones measure the sound
pressure field in 3 dimensions surrounding an interested
noise radiating object in order to geometrically analyze
the position of the noise source. The acoustic
holographic techniques may be approached by either
Spatial Fourier Transformation (SFT) [1,2] or Inverse
Boundary Element Method (BEM) [3,4]. In both
approaches, spatial sound pressures of a single frequency
are measured known complex values and the target of the
acoustic holography is to calculate either the unknown
surface pressure or the normal velocity of the specimen.
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Then the near or far filed sound pressure may be
recalculated, so as to reconstruct the original 3
dimensional sound pressure field. This paper presents an
inverse non-singular BEM technique for the acoustic
holographic analysis. The sound radiating object is a
tuning fork. The analysis is done in 3 dimensions. In
order to neglect the measurement signal noise of the
spatial sound pressure, the forward BEM supplied the 3
dimensional sound field pressures as the original known
complex values.

2.  Numerical methods

2.1 Finite Element Method (FEM)

The following equation (1) is the integral formulation
of the FEM celastic equations:

{Fllkfa}-0? M Ka} )

Fig. 1 3D quadratic hexahedral 20 nodes’ element

The isoparametric formulation for 3-dimensional
structural elements is well documented by Allik H. et. al.
[5]. Each 3-dimensional finite element is composed of 20
quadratic nodes and each node has nodal displacement
(ay, a,, a,) variables. In local coordinates the finite

element has 6 surface planes (*xy, +yz, +2zx) which
may be exposed to external air environment. The
exposed surface is used as a boundary element which is
composed of 8 quadratic nodes.

2.2 Boundary Element Method (BEM)

The boundary element solution of sound pressure
intensity is very useful to analyze the sound radiation of
vibrating devices; intensity, directivity pattern and noise
control elements. A tuning fork can be changed in its
shape to produce a particular pattern of radiation pattern.
For sinusoidal steady-state problems, the Helmholtz

equation, V2¢ + k29 =0 represents the fluid mechanics.

¥ is the acoustic pressure with time variation, /Y In
order to solve the Helmholtz equation in an infinite air
media, a solution to the equation must not only satisfy
structural  surface  boundary  condition (BC),

oF/dn=p fwz a, but also the radiation condition at
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infinity, |r|lir_1)1°° fs@¥/ar+ #eYds=0 . 9/on represents

differentiation along the outward normal to the boundary.

The Helmholtz integral equation derived from
Green's second theorem provides such a solution for
radiating pressure waves;

fs ‘P(q)aGkn(p’q) - Hla)

Gk(P’Q)i)W}dSq=ﬁ(P) ) @
where Gk(p,q)=e_jkr/4n'r s r=|p—q|

p is any point in either the interior or the exterior and q
is the surface point of integration. 8 (p) is the exterior

solid angle at p.

The acoustic pressure for the ith global node, ‘P( pi),

is expressed in discrete form [6]: (1<i<ng )

9G, | p..q
_ k d'¥(g)
(3a)
oG] p.
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(3b)
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- _ 2 4
= mz_ug A m,]‘I’mJ pfa) mz-:- /g B/ m,]amj
(3e)

where nt is the total number of surface elements and
a, ; are three dimensional displacements.

Equation (3b) is derived from equation (3a) by
discretizing integral surface. And equation (3¢) is derived
from equation (3b) since an acoustic pressure on an
integral surface is interpolated from adjacent 8 quadratic
nodal acoustic pressures corresponding the integral
surface. Then equation (3d) is derived from equation (3c)
by swapping integral notations with summing notations.
Finally the parentheses of equation (3d) is expressed by
upper capital notations for simplicity.

When equation (3¢) is globally assembled, the discrete
Helmholtz equation can be represented as

(4l lre)=+p j?[Bla} @

where [A] and [B] are square matrices of (ng by ng) size.
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ng is the total number of surface nodes.

When the impedance matrices of equation (4), [A] and
{B], are computed, two types of singularity arise [7]. One
is that the Green's function of the equation, Gk(pi,q),

becomes infinite as q approaches to p, . This problem is

solved by mapping such rectangular local coordinates
into triangular local coordinates and again into polar
local coordinates [8]. The other is that at certain wave
number the matrices become ill-conditioned. These wave
number are corresponding to eigenvalues of the interior
Dirichlet problem [9]. One approach to overcome the
matrix singularity is that [A] and [B] of equation (4) are
modified to provide a unique solution for the entire
frequency range [10-13]. The modified matrix equation
referred to as the modified Helmholtz gradient
formulation (HGF) [13] is obtained by adding a multiple
of an extra integral equation to equation (4).

(- pll@alck¥}=+p w?(BloalD)a}

where

)

st

k-(Number of surface element adjacent a surface node)

[C] and [D] are rectangular matrices of (nt by ng) size.
@ symbol indicates that the rows of [C],[D]
corresponding to surface elements adjacent a surface
node are added to the row of [A],[B] corresponding to
the surface node, that is,

n 74 ng n sli
C -5 F 4 E| Lo o
-'1 ]—1 i=] j=1 i=1 j=ll m=1

S i) ©
ga Dim, j)

m=1

B(’J )fZB(IJ )fZ

i=lj=1 i=1 j=1

where 8(i) is the number of surface element adjacent a
surface node. The derivation of the extra matrices [C],
[D] are well described by Francis D.T.I. [13]. Equation
(6) may be reduced in its formulation using superscript

@ for convenience;

l— J_

APW}=+p fszeB{a} (7
where ﬂA]—ﬁ[I]@a[CI) =49 | (Bl®alp) =
Equation (7) can be written as
~1
tl=tp (4% "5%) ®
Since the present acoustic vibrator produces

displacement data {a}at a natural frequency, the surface
pressure {‘I’} of the tuning fork is calculated from
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equation (8). Once o} and {‘I’} are known, the
acoustic pressure in the far field is determined by
Bp)=1 of equation (2) for given values of surface

nodal pressure and surface nodal displacement;

nt
S’ 2 B'm,j ay, |

t 8
‘P(pl-)= nz > Am ¥,
m=1 j=1 m=] j=1
®

2.3 Pseudo Inverse BEM

Previous forward BEM solves unknown near/far field
acoustic pressures once the surface displacement vector
and the surface pressure scalar of the vibrating tuning
fork are known. Equation (8) calculates the surface
pressures from the given 3 dimensional surface
displacement vectors which are supplied by the FEM
equation (1). Therefore the finally calculated near field
acoustic pressures derived by equation (9) may be used
as if measured sound pressures for the acoustic
holographic approach. These calculated near field
acoustic pressures are notified as an original input sound
pressures. The number of the original input sound
pressures are taken as the same as the number of
unknown surface pressures, that is, the number of the
surface nodes (ng).

. e .
Fig. 2 Three dimensional near field original sound
pressure positions.

Now the next step is to inversely find the unknown
surface pressure or surface displacement from the known
near filed sound pressure. Equation (3) as well as the
following equations (3~9) are modified, so that the
displacement vector is changed to the normal
displacement scalar. It ensures that 4®and B® have the
same matrix sizes as ng by ng,

f¥)=+p fwz(A@ )_IB@{an} (10
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Equation (9) can be reformulated as
4 (¥ B g, }= {\{' f} an

And if equation (10) is added into equation (11),

[pfszl(AeB)“lBéb +B, }gn}= G{an}={‘i’f} (12)

Equation (12) is solved by pseudo inverse matrix
technique which is derived by singular value
decomposition (SVD) since the coefficient matrices of
equation (12) have complex values. If the SVD of G
matrix is UAW# , then

b J=wnlut {‘P f} (13)

The size of G matrix is ng by ng. If more than ng near
filed sound pressures are supplied, then the number of
rows in G matrix is more than the number of columns in
G matrix. Even though G becomes rectangular matrix,
equation (13) can be still solved because the SVD
provide singular values from the highest order.

3. Results

3.1 Tuning Fork FEM Application

The FEM is applied to the analysis of the tuning fork.
Figure 3 shows 3 dimensional tuning fork FEM elements
and Table 1 shows the material properties of the air and
the steel.

Fig. 3 Three dimensional tuning fork FEM elements.
Length=152.4 [mm), Width=25.4 [mm), Material=Steel(4130)

Table 1 Material Properties

Density (p) | Young’s Poisson
[Ke/m’ ] Modulus Ratio
®vm?y | V)
Air 1.22 1.411E5 -
Steel 7822.9 2.0684E11 0.30
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8.0” {Lenyth)

it

Width)

I ——0.25" 0.375"

—
Thicknesss 0.5

~ Tunlog Fork - Matoriol = Stecl{4130}

Fig. 4 Tuning fork dimensions
The tuning fork has the first modal frequency at

128.4 Hz. Figure 5 shows the 3 dimensional modal shape
at the first mode.

Fig. 5 Modal shape of tuning fork (Color=Von Mises Stress)
at 128.4 Hz (1* mode)

3.2 Tuning Fork Forward BEM Application

Beam Paftemn (Linear Scale)

Fig. 6 Beam pattern of tuning fork in 2 dimensions

The surface pressure of the tuning fork is calculated by
equation (8) from the given surface displacement
provided by the FEM eigenvectors. Then the so-called
original near field acoustic pressures in 3 dimensions are
calculated by equation (9) at the same first modal
frequency, 128.4 Hz. Figure 6 shows the directivity
pattern of the tuning fork in 2 dimensions’ view. And
Figure 7 shows the directivity pattern of the tuning fork
in 3 dimensions.
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Fig. 7 Beam pattern of tuning fork in 3 dimensions
3.3 Tuning Fork Pseudo Inverse BEM Application

Only normal surface displacements are considered in
the pseudo inverse BEM. The normal surface
displacement of the tuning fork is calculated by equation
(13) from the supplied exterior near field acoustic
pressures which are complex values. Then The surface
pressure of the tuning fork is calculated by equation (10).
Figure 8 (a) and (b) show the real and the imaginary
surface pressures of the tuning fork respectively. The
blue continuous lines indicate the original surface
pressure of the tuning fork derived by equation (8) while
the red dotted lines indicate the recalculated surface

pressure of the tuning fork derived by equation (10).

. - , M (b)
Fig. 8 The real (a) and the imaginary (b) surface
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pressures of the tuning fork. The blue continuous lines =
Original surface pressure, The red dotted lines =
Recalculated surface pressure.

And figure 9 shows the 3 dimensional deformed shape
of the tuning fork drawn from the recalculated normal
surface displacement. It should be noted that the overall
deformed shape of the tuning fork is quite similar to that
of the originally displaced tuning fork, that is, the two
ends of the bars are significantly deformed in +Z and -Z
axes directions. The main difference between figure 9
and figure 5 is that the inner surfaces of the tuning fork
ends have much smaller displacements than the outer
surfaces of the tuning fork ends.

Figure 10 (a) and (b) show the real and the imaginary
near field sound pressures of the tuning fork respectively.
The blue continuous lines indicate the original near field
pressure of the tuning fork while the red dotted lines
indicate the reconstructed near field pressure of the
tuning fork. Both original and reconstructed near field
pressures are almost perfectly agreed each other.

Fig. 9 Three dimensional deformed shape of the tuning
fork drawn from the recalculated normal surface
displacement. (Color=Von Mises Stress)
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Fig. 10 The real (a) and the imaginary (b) near field
acoustic pressures of the tuning fork. The blue
continuous lines = Original near field pressure, The red
dotted lines = Reconstructed near field pressure.

Figure 11 shows the reconstructed directivity pattern
of the tuning fork in 3 dimensions.

Fig. 11 Reconstructed beam pattern of tuning fork in 3
dimensions

4. Conclusion

Non-singular BEM codes are developed in acoustics
application. The BEM code is then used to calculate
unknown boundary surface normal displacements and
surface pressures from known exterior near field
pressures. And then the calculated surface normal
displacements and surface pressures are again applied to
the BEM in forward in order to calculate reconstructed
field pressures. The initial exterior near field pressures
are very well agreed with the later reconstructed field
pressures.
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