• Title/Summary/Keyword: singular behavior

Search Result 71, Processing Time 0.033 seconds

Development of a Nonlinear Near-Wall Model for Turbulent Flow and Heat Transfer (난류유동 및 대류열전달에 대한 비선형 난류모형의 개발)

  • Park, Tae-Seon;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1569-1580
    • /
    • 2001
  • A new nonlinear near-wall turbulence model is developed to predict turbulent flow and heat transfer in strongly nonequilibrium flows. The k-$\varepsilon$-f$\sub$${\mu}$/, model of Park and Sung$\^$(1)/ is extended to a nonlinear formulation. The stress-strain relationship is the thrid-order in the mean velocity gradients. The strain dependent coefficients are obatined from the realizability constraints and the singular behavior at large strains. An improved explicit heat flux model is proposed with the aid of Cayley-Hamilton theorem. This new model includes the quadratic effects of flow deformations. The near-wall asymptotic behavior is incorporated by modifying the f$\sub$λ/ function. The model performance is shown to be satisfactory.

Design of End Diaphragms in PSC Box Girder Bridges Using a Strut-and-Tie Model (스트럿-타이 모델을 이용한 PSC 박스거더 교량의 End Diaphragm의 설계 연구)

  • 이창훈;윤영수;이만섭;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.961-966
    • /
    • 2003
  • In recent, the design of diaphragm which is representative disturbed region in PSC box girder bridge have been performed according to the empirical method or beam theory. But, these methods couldn't be described the behavior of the end diaphragm, and placed reinforcements accurately. As the compressive stress transferred by the web concentrated on the lower parts of diaphragm, it was demonstrated that the basic assumption of 2-D strut-and-tie model for the diaphragm that the compressive stress acts on the upper parts of the diaphragm is wrong. Meanwhile, in this research, after analyzing the variables of end diaphragm, the 2-D strut-and-tie models appropriate to each cases are proposed. And, the problems of 2-D strut-and-tie model were analyzed, so 3-D strut-and-tie model is proposed as well. There is no codes which include the demonstration of safety of 3-D strut-and-tie model. Hence, for nodes, the stresses at the elements which included the singular node in strut-and-tie model were investigated using the finite element analysis. And, the stress states of strut has one direction, so effective stresses were considered at the stage, dimensioning of the model. From the results, 3-D strut-and-tie model could predict the behavior of end diaphragm accurately, and design of reinforcement could be performed economically.

  • PDF

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

A NON-ASYMPTOTIC METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS

  • File, Gemechis;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.39-53
    • /
    • 2014
  • In this paper, a non-asymptotic method is presented for solving singularly perturbed delay differential equations whose solution exhibits a boundary layer behavior. The second order singularly perturbed delay differential equation is replaced by an asymptotically equivalent first order neutral type delay differential equation. Then, Simpson's integration formula and linear interpolation are employed to get three term recurrence relation which is solved easily by Discrete Invariant Imbedding Algorithm. Some numerical examples are given to validate the computational efficiency of the proposed numerical scheme for various values of the delay and perturbation parameters.

Analysis of Singular Stresses at the Bonding Interface of Semiconductor Chip Subjected to Shear Loading (전단하중하의 반도체 칩 접착계면의 특이응력 해석)

  • 이상순
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.31-35
    • /
    • 2000
  • The stress state developed in a thin adhesive layer bonded between the semiconductor chip and the leadframe and subjected to a shear loading is investigated. The boundary element method (BEM) is employed to investigate the behavior of interface stresses. Within the context of a linear elastic theory, a stress singularity of type $\gamma^{\lambda=1}$(0<1<1) exists at the point where the interface between one of the rigid adherends and the adhesive layer intersects the free surface. Such singularity might lead to edge crack or delamination.

  • PDF

Multi-Crack Problems for Non-homogeneous Material Subjected to Unsteady Thermal Load (비정상 열 하중을 받는 이질재료의 다중 크랙 문제)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • The purpose of this paper is to investigate the time behavior of a multiple crack problems. It is assumed that the medium contains cracks perpendicular to the crack surfaces, that the thermo-mechanical properties are continuous functions of the thickness coordinate. we use the laminated composite plate model to simulate the material non-homogeneity. By utilizing the Laplace transform and Fourier transform techniques, the multiple crack problems in the non-homogeneous medium is formulated. Singular integral equations are derived and solved to investigate the multiple crack problems. As a numerical illustration, transient thermal stress intensity factors(TSIFs) for a functionally graded material plate subjected to sudden heating on its boundary are provided. The variation in the TSIFs due to the change in material gradient and the crack position is studied.

Buckling for an Interface Crack Between an Orthotropic Layer and a Half-Space (직교이방성 층과 반무한체 사이의 계면균열에 대한 좌굴)

  • 정경문;범현규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.815-818
    • /
    • 2001
  • The buckling of an orthotropic layer bonded to an isotropic half-space with an interface crack subjected to compressive load under plane strain is considered. Basic stability equations derived from the mathematical theory of elasticity are applied to describe the buckling behavior. A system of homogeneous Cauchy-type singular integral equations of the second kind is solved numerically by utilizing Gauss-Chebyshev integral formulae. Numerical results for the buckling load are presented for various delamination geometries and material properties of both the layer and half-space.

  • PDF

Study on the Behavior of a Center Crack under Thermal Impact by the Dislocation Theory (전위이론에 의한 열충격하의 균열거동에 관한 연구)

  • Cho, Chong-Du;Ahn, Soo-Ick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3408-3414
    • /
    • 1996
  • This paper investigated plane strain stress intensity factors caused by thermal impact on a center-crack strip. The crack was aligned perpendicularly to the strip boundary. The problem was analysed by determining the dislocation density function in the singular integral equations formulated by the dislocation theory. Under the abrupt temperature change along the edge, the center crack behaved as a mode I crack due to the symmetric geometry. The value of maximum stress intensity factor monotonically increased until the ratio of dimensionless crack length approached to about 0.3, followed by gradual decrease. As a result, a critical corresponding crack length was determined.

Boundary Element Analysis of Singular Stresses in a Viscoelastic Thin Film due to Moisture Absorption (수분 흡수로 인해 점탄성 필름에 발생하는 특이 응력의 경계요소해석)

  • Lee, Sang-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.685-690
    • /
    • 2000
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate as the film absorbs moisture from the ambient environment. Th e time domain boundary element method is employed to investigate the behavior of interface stresses. The order of the free-edge singularity is obtained numerically for a given viscoelastic model. It is shown that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model considered.