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Analysis and Design of Jumping Robot System
Using the Model Transformation Method

Jin-Ho Suh' and Masaki Yamakita*

Abstract - This paper proposes the motion generation method in which the movement of the 3-links
leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is
the realization of jumping control moving in a vertical direction, which mimics a cat’s behavior. To
consider the movement from the point of the constraint mechanical system, a robotics system for
realizing the motion will change its configuration according to the position. The effectiveness of the
proposed scheme is illustrated by simulation and experimental results.

Keywords: iterative learning control, linearization, LQ optimal control, model transformation
method, nonholonomic, stochastic dynamic manipulability

1. Introduction

In general, cats sometimes jump toward a wall and kick
it in an attempt to get to a higher-place such as a roof,
thereby moving in a vertical direction, as indicated in Fig.
1. Moreover we know that the motion of a cat seems to be
very skillful and efficient for jumping. In this case, a robot
system to realize the motion changes its configuration
according to the position, considering the movement from
the point via the constraint mechanical system. Also, it has
several phases on the ground and in the air for kicking with
one leg. That is the system is under nonholonomic
constraint due to the reservation of its momentum.
Especially, the nonholonomic system has a constraint that
is not integrable, and it is well known that it cannot be
stabilized using smooth static state feedbacks.

The purpose of this paper is to analyze and construct the
control law for the realization of a real robotic system
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mimicking the motion of a cat. To realize the considered
robot system, the robot motion is supposed to be
constrained in the xy -plane to simplify the problem.

Moreover we propose a motion planning method in which
the movement of the 3-link leg subsystem is constrained to
a slider-link and a singular posture can be easily avoided.
In the one leg phase with one of the nonholonomic systems,
the direction for jumping is controlled using the input of
the fore leg. In the air phase, one control method using
state transformation and linearization is introduced to
control the landing algorithm, which is also applied in
order to improve the robustness of the proposed control
method.

The organization of this paper is as follows. In Section 2,
we derive the dynamic equation of a robotic system and the
proposed control method in this paper is described in
Section 3. In Section 4, we show the simulation and
experimental results for the jumping control of a cat robot.
These results illustrate the effectiveness of the proposed
control algorithm in this paper. Moreover, the coupled
tendon-driven system, which is supposed to be effective to
concentrate the actuator power to principal joints, is also
adapted. Finally, conclusions and recommendations or
further works are drawn in Section 5.

2. System Modeling
2.1 System Modeling

Even though a real cat twists its body after jumping to a
higher place such as a roof, we restrict the jumping motion
in the sagittal plane in this paper as shown in Fig. 2, so that
we can analyze and consider the fundamental control
problems.
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Fig. 2 The considered robotic system

In order to realize the motion of a cat, which jumps from
ground to wall and wall to roof, we consider a 7-link
manipulator system as shown in Fig. 3. Then, the feature of
this robot system can be summarized as follows:

(1) 6 rotational actuators at joints

(2) When the toe is contacting with the floor or wall, it

is assumed that there is no slip between the toe and
contact point.

./ié:‘ BR,
NETSYS) (xr>YR)
Fig. 3 Coordinates of a jumping robot system

In order to derive the fundamental control law from the
considered robot system in this paper, the whole system is
divided into two 4-link serial links at points as shown in
Fig. 3. Moreover a holonomic body constraint to keep the
body as one straight link is also introduced.

The generalized coordinates of a jumping robot system
as shown m Fig. 3 are defined as follows:

a=lar qal’ e
where

qr =Ixr Yr O, QFZ ‘9F3 0F4]T 2

gr =[xz Va HR] 9R2 9R3 9R4 ]T 3

and C,(g) is also represented by

[ % +1p(Cr +Cg )+ Cr +(ag +15)Cr |
—xp~lg (Cg +C )~ Cr . ~(ap, +73,)C,,,

Cy(q)=| Yr Hr(Sg +Sg ) +ESg, Hag, +75)Sk,, ©)
~Yr~Ig (Sg +5g,)~IrSp,, = (AR, +17,)5R,,,

| Or +85, +0p, +0g, —Cp —Op —Op =G +7

where

Cp =cosb, Sp=sinbg
Cr, =cos(6, +6p), Sp, =sin(bg, +0F,)

Cr., =cos(bp, + g, +6p,),

1 ®)

SFuzs = SiIl(@FI + HFz + 91;3)
CF1234 = COS(9F] + ng + HFs + 9F4 )

SFW = sin(@F] + HFz + HF} + 9F4)

Though these coordinate systems are redundant and the
system description becomes complex, the advantage for
system coordination can be represented as follows:

(1) The 4-link dynamic equation is simpler than the 7-
link one and we can use the same equation for each
link.

(2) This coordinate system is very useful for judging
the timing of switching the constraint on the toe,
which will be mentioned later.

Moreover, for the following discussion, Jacobian of

body constraint is defined as follows:

2 Cy(q)=J4(g)q=0 (6)
where
(@)= TED ™

2.2 Variable Constraints

We assume that sufficient constraint force is exerted
when the toe makes contact with the ground and the wall,
and the holonomic constraint C, (g,mode)=0 is

introduced according to the state of the system, where
mode is an index that indicates the state of toe contact. For
example, when only the hind toe is constrained to the floor
or wall, then C,(g,mode) becomes;

®

C,(g,mode) = [xR ~ Xz (COnst)]

Yr =Yg (const)

and we can calculate the Jacobian given by
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2C(9)=J(@q=0 ©)
where
1@=222 (10)

In this example, the problem is how we can judge the
mode. The reply of this problem lies in the understanding

~ . _ T . .
of the constraint force A,=[4, 4] as shown in Fig. 4. In
the case of the toe being on the ground, 4, is the
horizontal constraint force and 4, s the vertical one, and
if the 4, is equal to 0 and the acceleration upward is

positive, the constraint should vanish, 1=0, and the toe
can move upward. When the toe is on the wall, the
switching timing depends on the 1, and vise versa.

Body
A y
’1x Floor
Fig. 4 Constraint force
2.3 Dynamic Equation

In this section, the dynamic equation for redundant
coordinate systems is considered. By ignoring the
constraint, we can describe two 4-link dynamic equations
for a jumping robot system as follows:

M(@)i +C(q,d)q+Glg) =7 (11
0 Mz 0 Ca
o}
Gr TR
In order to change the position constraint to acceleration

constraint, we will differentiate Eq. (5) and Eq. (8).
Moreover, in order to keep the constraint, constraint forces,

where

JI4, and JTA, are introduced, respectively. Also, the

following simultaneous equations are used to express the
system including all constraints;

M@)j+Ca.9)q+G@)=t~Jf Ay~ JT A (12)

Jod=~Jsq (13)

Jvg==Jv9q (14)

From these equations, accelerating vector ¢ , and
and 4, ,

respectively. Therefore, both constraint force and
acceleration can be used for judging the mode change.
Collision with a wall or something else is assumed to be
perfectly inelastic, and the state will shift to that of the
under constraint just after the collision, which is modeled
as the effects of impulse forces.

In two constraint forces 4, and A, the entire dynamic

constraint forces 1, can be calculated,

system is represented as follows:
M(q)j+C(g.§)q +Glq) =7~ J] 4, (15)

Jré = .rq. (1 6)
where

Jr:[']b Je]T’ &:[ﬂb ﬂ’e]T

The expression of collision is defined by new constraint
force J¢=0 and itis described as follows:

M@)i+Cg.d)g+Glg)=t-J 4, -JT (17)
Jd=-J,q (18)
Si=~Jid (19)

Therefore we can derive the following equation using Eq
(17) and Eq. (18)

b= XN q+d, M (e~ CG-G-J] )} (20)
where
X=JM'J"

So we can represent the dynamic equation from Eq. (17)
as follows:

MG+Cq+G=r-J X"

. 21
g+ M (c-Ch-G-J A)-J' 4

3. Jumping Control Algorithm

Since the initial configuration is very important for the
jumping motion of a robot, it is determined by stochastic
dynamic manipulability measure. For dynamic control of
the jumping of a robot, we pay particular attention to the
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motion of the mass center and the proposed method is
derived as if center of the gravity is moved by a spring
connected to a virtual wall.

3.1 Model Transformation Method

Fig. 5 Model transformation for jumping motion

In the path design for jumping control, how should it just
determine the desired value to the speed of the center of
gravity? This is a very complex problem and the same
thing can also be considered regarding the desired value of
the rear leg. Therefore we consider the control to be
applied constraint by moving 3-links of a leg using a
virtual linear actuator as illustrated in Fig. 5.

Now, we consider the new coordinate as follows:

& +tan” (ﬁ—j)

14
Vol |-6,-6,~,+m+tan’' (C2)

where 6, >0. Moreover we consider the constraint that the

position of the gravity center of links is above the virtual
linear actuator for one-to-one correspondence. Since we
use new parameters £ given by

g(Q):gxpy _gypx

(23)
=815+ 583+ 8555

Here the constraint condition and new coordinate using
s and £ are defined by the following equation,
respectively.

£=0 and x, =[¢ Iy {;‘]T.

According to the relation for angular coordinate and
velocity, the state is given by:

N PAC) .
== 24
X, Lg (q)] @ (24)

where
1 J, A 0
0 LSy thsy)  h(hsithss)
!/
J, = (25)
—1+2 —1+2 ]
a a

X 0
0

$ier+&03 St 0

And the given parameters by the above equations are
calculated as follows:

&= bl (h-a)) &= myaply ity (l—ay)
1= M 52T M

'f _ gy tmh b+l (my i)

3 M
Pe=h+he, +hexs, p, =l +1h8, +1s);
J2 =l22 +l32 +lllzcz +21213C3 +lll3023

S2 =Sln02, S3=Sin€3, Sz3 =Sin(92 +93)

Cy =C0592,C3=C0593, Cry =C0862 +03)

& =2nzr and

&, =2nm by model transformation as shown in Fig. 5 and it

rankJ. =4 except for singular points

is assumed that J' exists except for singular points.

Therefore, we can know that model transformation is
possible since ¢ is rewritten using Eq. (24) as follows:

G=J; G-JT, %) (26)

3.2 Jumping Control

In this section, we discuss the jumping problem of a
robot system with two legs. As the proposed robot system
mimics the motion posture of a cat, it uses feedback control
in order to converge upon a desired value that is decided by
preparing itself for the next jumping motion.

3.2.1 Standing with a hind leg

In order to start the path in the desired direction, an
angle needs to turn towards that direction. Therefore, we
consider controlling the under-actuator link from the
characteristic of the system. The control purpose in this
paper is summarized as follows:

(1) To the angle that wants to jump an absolute angle of
the rear leg,
(2) Ifpossible, it is the angle of legs to desired posture.
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Fig. 6 Coordinate configuration with one leg

We consider a 3-links model, which has fixed the lengths
of legs /- and [, respectively. The structure of the

proposed model is shown in Fig. 6. Using body angle 6,
for the relative angles of leg ¥, and y,, , the new state

x is considered as follows:

x=[xp Xg xazlrz[t//H1 Wr, 1//F3]T (4))

Therefore the quantity of motion L(f) can be derived by

L(t) = 10 - gG(x)dt: prp +Hll] 'x.'-al +Haz xﬂz (28)
where
Hy(x)=ay+ay + a3 + 28 C +25,C, + 255G,
H, (x)=ay+a;+BC +25,C, + £1Cs
Ha2 (x) =3+ 5,C, + 3G,
1
G(x) = 5{(”7;: + 2my, + 2mf ), cosx,

+(my, +2m;)l, cos(x, +x, )

+mglscos(x, + Xg +X,)}8

Here, a; and B, (i=12,3) are constants decided by

the system. These parameters are defined by

a;=J, +{4(mb+mf)+mh}[i3,
ay=Jy+(my+am)y, ay=J,+ml;
B =2(m, +2mf)lhlb, 5 =2mflflb

Bs =2myl,l,, C)=cos(x, )

Gy =cos(x,,), C3=cos(x, +x,,)

To consider input to have angular velocity of an under-

actuated link, the given system is represented as follows:

L(1) _Hal Hay)
H,Ww) H,(y) H,(p)
x=| 0 |+ 1 0 u (29)
0 01
L)
—=G(x 30
& (x) (30)

Therefore, the control input u(f) pertaining to desired

velocity %,, of an under-actuated link is given by

Oy =J iy -2y et -De (1)
H,
where
.g{{%-%ﬂ (32)

and J;J exists zero space of J,, and £ shall decide that

|| %,q—u|* becomes the minimum to desired velocity X, of

X,
The simulation results for these conditions are shown in

Fig. 7.

08 08 . .

] [ ! I
07 120-pl 0.7 20-p
06 L* 0.6

s b -
BN Nt
7

o \ ] .. Al
] \
TV |

0 i
-0.5 -04 -03 -02 -01 0 01 02 03

0.1

.

90.5 04 OIS -02 (;1 ] 01.1 2 03
(a) without any control (b) with control
Fig. 7 Movement of robot standing with a hind leg

In these results, an initial posture x, and a desired

posture x, are given by

xo=[142 1.09 1.70]
x,=[175 010 1.57]

The quality of motion for an initial angle is Z, =1.57,

and the desired velocity and K, are given by

Xg=K,(x(t)—xy)
Kp =diag(20,30,20)
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3.2.2 In the air

For control while in the air, we should prepare the
controlling arbitrary posture for landing on the ground.
Moreover, since the center of gravity may be considered by
parabola movement in the air, the movement waiting when
it jumps out is conserved and the jumping of a cat robot is
exercised in the air. That is, this system has nonholonomic
constraints resulting from the conservation law of
movement.

In this paper, we will consider the method introduced by
[7] in order to control the system that has drift terms. The
procedure for the proposed control method is simply
summarized as follows:

(1) The coordinate transformation

(2) The transformation to the time invariant nonlinear

system

(3) The approximation by neighborhood of desired state

Moreover we will apply the learning control for an

improvement of robustness [1]. The control purpose
for jumping control in the air is summarized as
follows: landing on the roof on which height is set
up beforehand with a desired posture from a fore
limb.

Fig. 8 Coordinate configuration in the air

As shown in Fig. 8, we consider a 3-links model, which
has fixed the length of legs, I, and /, . Using body

angle g, for the relative angle of legs v, and yy , the

new state x is also rewritten by
le‘/’ 6, T]:['/’F2 ¥y, gb]T (33)

For simplicity, we assume that the center of gravity is
the center of each link. The circumference of the center of
gravity in the air is described as follows:

L(t) = H o p (W Wy + Hop(0)6, (34

Moreover, to consider the velocity of the link to be an

input u =[uF uH]T, the system is represented as follows:

p 0 1 0
Zol oo |+ 01 u
dt L _HaF(W) _HaH(V/)
Hog(y) Hap () Hap ()
=f(x)+g(x)u (35)
where
HaF ('//) = hF + hlcal + h3Ca3 (36)
Hyw)=hy —mChp—mCys (37)

Hp(W)=hp +2mCh +2mCpp +2mC,5  (38)

Here, hp,---,h; are constants to be decided by the

system and these constants are given by

I2m (my+my)
— ST T
hp =Jp+ aM
I3my, (my,+m )
hy =Jy = aM
1} (mym  +mymy+m ymy,)
aM

Ifmf (m,, +my, )+13mh (my+m;)
aMmM

h :Iblfmf(mb+2mh) A =1blhmh(”’b+2mf)

1 4M 212 AM

1mem,
4M

Car =cosyp,, Cpp =cosyy, C,3=cos(yp, +¥y,)

h= s M=m;+my,+m,

Since the state to realize at the time of landing is given
by x, the error system of the state equation can consider

a given error equation as follows:
T=x-x;=(7.9) (39)

Therefore, we can also consider coordinate trans-
formation of time-varying and input transformation as

follows:
— 5"’ — — l/7
g_{éebil_{eb_mx(t_tf):l (40)

=l ] =u (41)

where 7, is an initial vector and it is the landing time

computed from an initial state and a desired state. Then, it
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is transferred by the time invariant nonlinear system as
follows:

J 0 1 0
—é = 0 + 01 17
O CHw@) Am)
Hp(y) Hgp(0) Haul&,) H,5(E,)
=) +8(H)u (42)

In order to realize the control for this system, Eq. (22),
we execute linearization around the desired state, and the
state feedback is also given by LQ optimal control as
follows:

d 0
_ro+ ]+ g
dt o0&, _
£=0
0 0 0
= 0 0 0| ¢
B Ly & . L
r Hag(fw)) 05y (HaB(étu/)) 0 £=0
1 0
+ 01 i (43)
_Hr©®  Hy(0)
H 5(0) H 5(0)

Though the weight matrices are defined by the following
equations, the pole placement in a specified region is
performed in order that the very late mode exists. The
weight matrices are defined by

b0 0.1 0
o=lo 1 o0 ,R:[' ],d:& (44)
0 01
0 0 100

In these simulation results, the desired value and an
initial state are defined as follows:

x=[-01 01 -2f x, <[z z —x=f

The initial angular velocity of the center of gravity is
referred to as 3[msec] in the direction of 60[degrees], and
Ly =—-0.4, respectively. The parameters to be used in the

simulation are indicated in Table 1 and the movement of
the jumping robot in the air is shown in Fig. 9.

Table 1 Variable parameters
e hig hy d G s

[ng] 0.011 0.037 -0.004 0.011 0.011 0.004

Moreover the body angle 6, andstate £ are shown in

Fig. 10 and Fig. 11, respectively. By controlling as shown
in these results, it can check that it has landed and the state
almost converges to 0 after the body angle has become
perpendicular.

05 1 0.5

" L 0
-0.6 0 05 1 15 -0.5 0 0.5 1 15

(a) without any control (b) with control
Fig. 9 Movement of robot in the air

theta b ——
theta_bd —-——

=)
o
2 .......... 1
-3 i P i i )
0 0.1 0.2 0.3 0.4 0.5 0.6
[sec]
Fig. 10 Body angle 6,
3 r — —
Xi_F ——
: Xi_H s
o b xi_b - T
) e
B 0 i e e
............. ]
0 0.1 0.2 0.3 0.4 0.5 0.6

[sec]

Fig. 11 State &

3.3 Iterative Learning Control

In an actual system, since the input is given in many
cases in torque input, the convergence of & is not
guaranteed when sufficient input is not given or parameter
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e
9

Linearized System ; >

Fig. 12 Iterative learning control

error exists. Therefore, we will realize repetitive learning
control for a linearized system given by Eq. (43) [3]. Then,
the system is realized by controlled minor loop feedback

control pertaining to linearization, u'(f) which is a

learning term generated by error signal in this system is
added in Fig. 12.
That is,

§(1)=(A+FB)E(t)+u' (1) (45)
WO =u' )+ (46)
where &,(t) is desired stat and ¢'(1) is defined by

¢ (N=&,(0-¢' (0 47)

However, we specify £,=0 in this system.

Multiplying the error by weight filter, 7, in order to

diminish the error of finial time, the criterion function J’
is also defined as follows:

e () =W M (1) =T, (48)
= p el et =|eif (49)
where
ap 0 0 Be 0 0
We=| 0 ay 0|, Wy=| 0 By 0
0 0 a 0 0 B,

Then the control law is also given by
O =T, T Tre (50)

ui+1:ui+7izi’ (51)

i < T;T}Tfei,zi >
= —.

(52)

"Tprzi‘

In the system of 3-links in the air, we should execute
numerical simulations adding disturbance as follows:

@)= f(O)+8(u+w(r), [wr)l<5 (50

where =5 and g=1.

05+ 05 -

-0.5 6 0‘.5 ; 15 0—0.5 6 015 “1 15
(a) 1* trial (b) 10™ trial
Fig. 13 Movement of jumping control in the air

Therefore the movement of jumping control in the air
applied an iterative learning control that is shown in Fig.
13. The criterion function is also indicated in Fig. 14. From
this result, we can ensure that the criterion function is
decreased about 30% and the landing is successful.

05
045 L \x\ B + . s B 4
0.4 ) .
035 L \\\. . : . -
03| . : . J
0.25 ’
0.2
015 | : e ]
0.1

0.05 : : 1

0 L 1 i 1
0 2 4 6 8 10

[times]
Fig. 14 Criterion function

T

T

T
i

T

4. Simulation and Experimental Results

This section illustrates the performance of the proposed
control algorithm for a jumping robot system using
simulation and experimental results.

In the simulation, it is assumed that a fore leg and a rear
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leg have same parameters, respectively. Moreover the limit
angles of links are designed by considering the
experimental system of a jumping robot as indicated in Fig,
15.

%77 Joint 3
/8

Joint 2

Joint 1

Ty /8

Fig. 15 Parameters of jumping robot system

Moreover the system parameters used in optimization
and the simulation parameters are determined as shown in
Table 2. Also, we assume that both the wall and roof for
jumping control are located at x =-0.4[m] and y =0.5[m],
respectively. These results are presented in Fig. 16 and Fig.
17

Table 2 System parameters for jumping robot system

Link 1 Link 2 Link 3 Link 4
m =0.15 my=0.15 | my=0.195 my =0.32
I, =0.09 1, =012 I; =0.09 [;=0.15
a; =0.045 a, =0.06 | a;=0.045 ay =0.075
_myl} _myl _ml} _mgl?

Ji= 12 Jy= 12 J3= 12 Jy= 12
¥, =0.02 v, =034 vy =0.34 V,=034

0.1sec/frames
2 , , :
1.5¢ y

05 1 15

Fig. 16 Simulation result of jumping robot system

ex($ipsi_(H_1d}$)

<Phase2>

I

<Phased> g J

Z <Phase7> L <Phase8> <Phase9>

Fig. 17 Schematic configuration of the jumping motion

For the experiment, we designed a 7-links jumping robot
system as shown in Fig. 18 and the configuration of the
entire system is illustrated by Fig. 19.

Fig. 19 Configuration of jumping control system
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Since motors are too heavy to be installed in the robot,
the power of actuators is supplied from outside by wires as
revealed in Fig. 20 and the weight of the wire is
compensated by a contour weight. The position and toe
angle are measured by a CCD camera, and the
potentiometer used to encode the motors are useless due to
the extension of wire in order to measure joint angles.
Because of the wire extension, there are numerous time
delays in the wire system.

Fig. 20. Operator principle of motor and wire system

The problems due to time loss and disturbance of the
wire system are too serious. Also, it is difficult to apply the
proposed control method directly. Therefore, the learning
control is applied in this experimentation and the
experimental results are shown in Fig. 21.

' ' Phase —— 4
1
]
i k. k. d = IJ - ._:3
04 06 08 1 12 14
(a) phase
04 L 1 L T ~T
— 035 i —
E 02 - ot -
£ 0B L -
02 5
2 oo bl L
5 o1
[
0 i | i 1 J i
0 02 04 08 08 1 12 14
(b) length
2
15¢
1
- 05 S
B of
= 95
1
15

0.01
0005

[=]

0005 |

_001 i i i i J. i
0 0.2 0.4 08 R} 1 1.2 14

(d) constraint
Fig. 21 Experimental results

209

5. Conclusion

In this paper, we proposed a jumping control method of
a cat robot using model transformation. Moreover, we
confirmed the effectiveness of the control law by
simulation and experimental results, in which the jumping
robot could jump towards a wall and land on it. For its
initial posture evaluation, we used stochastic dynamic
manipulability measure. In order to realize the real robot,
the learning control was applied and significant progress
was confirmed.

In these results, since the disturbances in wire system
were very large, we faced difficulties when applying the
proposed control method directly. Moreover the jumping
motion has not yet been completed and further work should
include the following conditions:

(1) Completion of the jumping with a real robot

(2) Learning control in task space

(3) Realization of 3-dimensional jumping robot and

development of control into 3-dimensional system
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