• Title/Summary/Keyword: single-wall carbon nanotube

Search Result 73, Processing Time 0.022 seconds

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune;Abdelwahed Semmah;Mohammed L. Bouchareb;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.243-261
    • /
    • 2023
  • This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.

Fabrication and Straining Model of a CNT/EAP Composite Film (카본나노튜브/도전성폴리머(CNT/EAP) 복합재 필름의 제조 및 특성분석)

  • Zhang, Shuai;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The relationship between strain and applied potential was derived for composite actuators consisting single-wall carbon nanotubes (SWNTs) and conductive polymers (CPs). During deriving the relationship, an electrochemical ionic approach is utilized to formulate the electromechanical actuation of the composite film actuator. The results show that the well-aligned SWNTs composite actuator can give good actuation responses and high actuating forces available. The actuation is found to be affected by both SWNTs and CPs components and the actuation of SWNTs component has two kinds of influences on that of the CPs component: reinforcement at the positive voltage and abatement at the negative voltage. CNT/EAP was fabricated successfully using the chemical polymerization method.

  • PDF

Properties of CNT field effect transistors using top gate electrodes (탑 게이트 탄소나노튜브 트랜지스터 특성 연구)

  • Park, Yong-Wook;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.313-318
    • /
    • 2007
  • Single-wall carbon nanotube field-effect transistors (SWCNT FETs) of top gate structure were fabricated in a conventional metal-oxide-semiconductor field effect transistor (MOSFET) with gate electrodes above the conduction channel separated from the channel by a thin $SiO_{2}$ layer. The carbon nanotubes (CNTs) directly grown using thin Fe film as catalyst by thermal chemical vapor deposition (CVD). These top gate devices exhibit good electrical characteristics, including steep subthreshold slope and high conductance at low gate voltages. Our experiments show that CNTFETs may be competitive with Si MOSFET for future nanoelectronic applications.

Toxicity Analysis of Carbon Nanotubes Based on Their Physicochemical Properties (서로 다른 물리화학적 특성을 갖는 탄소나노튜브(CNT)의 생물학적 독성 분석)

  • Kim, Soo-Nam;Kang, Min-Sung;Han, Young-Ah;Kim, Jae-Hwan;Roh, Jin-Kyu;Kim, Young-Hun;Choi, Sang-Dun;Park, Eun-Jung
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.273-279
    • /
    • 2011
  • The physicochemical properties of manufactured nanomaterials can vary depending upon the methods of manufacture, although the utilized raw materials are same. Hence, the toxicity can also vary based on the methods of nanomaterials manufacture. In this study, we compared the toxicity effect of two types of CNTs (MWCNT, multi-walled carbon nanotube; SWCNT, single-walled carbon nanotube) that differ in length and wall number. In case of MWCNTs, inflammatory responses were more strongly induced in longer groups, whereas body weights more clearly decreased in shorter groups. SWCNT significantly decreased the relative weights of brain and kidney, and the inflow of immune cells and the hematological changes were observed significantly on day 1 and day 7 after exposure, respectively. Our results showed that the length and wall number of CNTs can serve as critical factors in the exhibited inflammation and toxicity.

Electromechanical Behaviors and Application of Carbon Nanotube Composite Actuators Consisting of Bundles and Mats (다발/매트로 구성된 탄소나노튜브 복합재 엑츄에이터의 거동특성 및 응용연구)

  • Kim, Cheol;Liu, Xinyun
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.34-39
    • /
    • 2005
  • The relationship between strain and applied potential was derived for composite actuators consisting of single-wall carbon nanotubes (SWNTs) and conductive polymers (CPs). During deriving the relationship, an electrochemical ionic approach is utilized to formulate the electromechanical actuation of the composite film actuator. This relationship can give us a direct understanding of the actuation of a nanoactuator. The results show that the well-aligned SWNTs composite actuator can give good actuation responses and high actuating forces available. The actuation is found to be affected by both SWNTs and CPs components and the actuation of SWNTs component has two kinds of influences on that of the CPs component: reinforcement at the positive voltage and abatement at the negative voltage. Optimizations of SWNTs-CPs composite actuator may be achieved by using well-aligned nanotubes as well as choosing suitable electrolyte and input voltage range.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

Bending behavior of SWCNT reinforced composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.537-548
    • /
    • 2017
  • In this paper presents bending characteristic of single wall carbon nanotube reinforced functionally graded composite (SWCNTRC-FG) plates. The finite element implementation of bending analysis of laminated composite plate via well-established higher order shear deformation theory (HSDT). A seven degree of freedom and $C^0$ continuity finite element model using eight noded isoperimetric elements is developed for precise computation of deflection and stresses of SWCNTRC plate subjected to sinusoidal transverse load. The finite element implementation is carried out through a finite element code developed in MATLAB. The results obtained by present approach are compared with the results available in the literatures. The effective material properties of the laminated SWCNTRC plate are used by Mori-Tanaka method. Numerical results have been obtained with different parameters, width-to-thickness ratio (a/h), stress distribution profile along thickness direction, different SWCNTRC-FG plate, boundary condition, through the thickness (z/h) ratio, volume fraction of SWCNT.

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.

Application of Nano-carbons in Field Emission Display (전계방출표시소자에서 나노 카본의 응용)

  • Kim, Kwang-Bok;Song, Yoon-Ho;Hwang, Chi-Sun;Jung, Han-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.76-79
    • /
    • 2003
  • The characteristic of single wall carbon nanotube (SW-CNT) and herringbone nano fiber (HB-CNF) emitters was described. SW-CNT synthesized by arc discharge and HB-CNF prepared by thermal CVD were mixed with binders and conductive materials, and then were formed by screen-printing process. In order to obtain efficient field emissions, the surface treatment of rubbing & peel-off was applied to the printed CNT and CNF emitters. The basic structure of FED was of a diode type through fully vacuum packaging. Also, we proposed a new triode type of field emitter using a mesh gate plate having tapered holes and could achieve the ideal triode properties with no gate leakage currents.

  • PDF