Browse > Article
http://dx.doi.org/10.12989/scs.2017.24.5.537

Bending behavior of SWCNT reinforced composite plates  

Chavan, Shivaji G. (Department of Mechanical Engineering, S.V. National Institute of Technology)
Lal, Achchhe (Department of Mechanical Engineering, S.V. National Institute of Technology)
Publication Information
Steel and Composite Structures / v.24, no.5, 2017 , pp. 537-548 More about this Journal
Abstract
In this paper presents bending characteristic of single wall carbon nanotube reinforced functionally graded composite (SWCNTRC-FG) plates. The finite element implementation of bending analysis of laminated composite plate via well-established higher order shear deformation theory (HSDT). A seven degree of freedom and $C^0$ continuity finite element model using eight noded isoperimetric elements is developed for precise computation of deflection and stresses of SWCNTRC plate subjected to sinusoidal transverse load. The finite element implementation is carried out through a finite element code developed in MATLAB. The results obtained by present approach are compared with the results available in the literatures. The effective material properties of the laminated SWCNTRC plate are used by Mori-Tanaka method. Numerical results have been obtained with different parameters, width-to-thickness ratio (a/h), stress distribution profile along thickness direction, different SWCNTRC-FG plate, boundary condition, through the thickness (z/h) ratio, volume fraction of SWCNT.
Keywords
SWCNTRC plate; micromechanics model; HSDT; FEM formulation;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionall1 y graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249.   DOI
2 Fard, K.M. (2015), "Higher order static analysis of truncated conical sandwich panels with flexible cores", Steel Compos. Struct., Int. J., 19(6), 1333-1354.   DOI
3 Hadianfard, M.A. and Khakzad, A.R. (2016), "Inelastic buckling and post-buckling behavior of gusset plate connections", Steel Compos. Struct., Int. J., 22(2), 411-427.   DOI
4 Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Compute. Mater. Sci., 39(2), 315-323.   DOI
5 Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., Int. J., 22(3), 473-495.   DOI
6 Herasati, S., Zhang, L.C. and Ruan, H.H. (2014), "A new method for characterizing the interphase regions of carbon nanotube composites", Int. J. Solids Struct., 51(9), 1781-1179.   DOI
7 Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2013), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276.
8 Hu, H., Onyebueke, L. and Abatan, A. (2010), "Characterizing and modeling mechanical properties of nanocomposites-review and evaluation", J. Minerals Mater. Characteriz. Eng., 9(4), 275-319.   DOI
9 Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", Urbana, 51, p. 61801.
10 Kara, M.E., Firat, F.K., Sonmez, M. and Karabork, T. (2016), "An investigation of anchorage to the edge of steel plates bonded to RC structures", Steel Compos. Struct., Int. J., 22(1), 25-43.   DOI
11 Kreculj, D.D. (2008), "Stress analysis in an unidirectional carbon/epoxy composite material", FME Transactions, 36(3), 127-132.
12 Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element free kp-Ritz method", Computational Methods Applied Mechanics and Engineering, 256, 189-199.   DOI
13 Lei, Z.X., Zhang, L.W. and Liew, K.M. (2016), "Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method", Composites Part-B, 84, 211-221.   DOI
14 Madhu, S. and Rao, V.S. (2014), "Effect of carbon nanotube reinforcement in polymer composite plates under static loading", Int. J. Chem. Molecul. Nuclear Mater. Metallurg. Eng., 8(3), 200-205.
15 Mehditabar, A., Akbari Alashti, R. and Pashaei, M.H. (2014), "Magneto-thermo-elastic analysis of a functionally graded conical shell", Steel Compos. Struct., Int. J., 16(1), 77-96.   DOI
16 Mohammadpour, E., Awang, M., Kakooei, S. and Akil, H.M. (2014), "Modeling the tensile stress-strain response of carbon nanotube/polypropylene nanocomposite using nonlinear representative volume element", Mater. Des., 58, 36-42.   DOI
17 Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., Int. J., 22(2), 277-299.   DOI
18 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", ASME J Appl Mech, 51(4), 745-152.   DOI
19 Prokic, A., Lukic, D., Ladjinovic, Dj. (2014), "Automatic analysis of thin-walled laminated composite sections", Steel Compos. Struct., Int. J., 16(3), 233-252.   DOI
20 Rastgaar Aagaah, M., Nakhaie Jazar, G., Nazari, G. and Alimi, M. (2014), "Third order shear deformation theory for modeling of laminated composite plate", SEMX International Congress and Exposition on Experimental and Applied Mechanics, Costa Mesa, CA, USA, June.
21 Reddy, B.S., Reddy, A.R., Kumar, J.S. and Reddy, K.V.K. (2012), "Bending analysis of laminated composite plates using finite element method", Int. J. Eng. Sci. Technol., 4(2), 177-190.   DOI
22 Rupp, J., Sezen, H. and Chaturvedi, S. (2014), "Axial behavior of steel-jacketed concrete columns", Steel Compos. Struct., Int. J., 16(1), 61-67.
23 Salami, S.J. (2016), "Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets", Physica E, 76, 187-197.   DOI
24 Sarvestani, H.Y. and Hojjati, M. (2016), "A high-order analytical method for thick composite tubes", Steel Compos. Struct., Int. J., 21(4), 755-773.   DOI
25 Thirumalaiselvi, A., Anandavalli, N., Rajasankar, J. and Iyer, N.R. (2016), "Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading", Steel Compos. Struct., Int. J., 20(1), 167-184.   DOI
26 Wu, Y.T., Kang, D.Y., Su, Y.T. and Yang, Y.B. (2016), "Seismic behavior of composite walls with encased steel truss", Steel Compos. Struct., Int. J., 22(2), 449-472.   DOI
27 Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotubereinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39(18), 5459-5472.   DOI
28 Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nano composite reinforced beam using a multiscale analysis", Compos. Struct., 71(3), 388-396.   DOI
29 Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111, 205-212.   DOI
30 Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460.   DOI
31 Bhashyam, G.R. and Gallagher, R.H. (1983), "A triangular shearflexible finite element for moderately thick laminated composite plates", Comput. Methods Appl. Mech. Eng., 40(3), 309-326.   DOI
32 Bakhti, K., Kaci, A., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., Int. J., 14(4), 335-347.   DOI