• Title/Summary/Keyword: single variable

Search Result 1,306, Processing Time 0.032 seconds

Determination of Optimal Process Mean and Screening specification Limits for a Production Process (생산공정의 최적공정평균 및 검사기준값의 결정기법 연구)

  • Lee, Min-Koo;Choi, Yong-Sun
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2000
  • This paper considers the problem of determining the optimal process mean and screening specification limits of a surrogate variable associated with product quality under two-stage screening procedure. In two-stage screening, the surrogate variable is inspected first to decide whether an item should be accepted, rejected or additional observations should be taken. If additional observations are required, the performance variable of interest is then observed to classify the undecided items. Assuming that the performance variable and the surrogate variable are jointly normally distributed, the optimal process mean and the screening limits are obtained by maximizing the expected profit which includes selling price, production, reprocessing, inspection and penalty costs. A numerical example is presented and numerical studies are performed to compare the proposed two-stage screening procedure with single-stage screening procedures.

  • PDF

IDENTIFICATION OF SINGLE VARIABLE CONTINUITY LINEAR SYSTEM WITH STABILITY CONSTRAINTS FROM SAMPLES OF INPUT-OUTPUT DATA

  • Huang, Zhao-Qing;Ao, Jian-Feng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1883-1887
    • /
    • 1991
  • Identification theory for linear discrete system has been presented by a great many reference, but research works for identification of continuous-time system are less than preceding identification. In fact, a great man), systems for engineering are continuous-time systems, hence, research for identification of continuous-time system has important meaning. This paper offers the following results: 1. Corresponding relations for the parameters of continuous-time model and discrete model may be shown, when single input-output system has general characteristic roots. 2. To do identification of single variable continuity linear system with stability constraints from samples of input-output data, it is necessary to use optimization with stability constraints. 3. Main results of this paper may be explained by a simple example.

  • PDF

Variable-magnitude Voltage Signal Injection for Current Reconstruction in an IPMSM Sensorless Drive with a Single Sensor

  • Im, Jun-Hyuk;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1558-1565
    • /
    • 2018
  • Three-phase current is reconstructed from the dc-link current in an AC machine drive with a single current sensor. Switching pattern modification methods, in which the magnitude of the effective voltage vector is secured over its minimum, are investigated to accurately reconstruct the three-phase current. However, the existing methods that modify the switching pattern cause voltage and current distortions that degrade sensorless performance. This paper proposes a variable-magnitude voltage signal injection method based on a high frequency voltage signal injection. The proposed method generates a voltage reference vector that ensures the minimum magnitude of the effective voltage vector by varying the magnitude of the injection signal. This method can realize high quality current reconstruction without switching pattern modification. The proposed method is verified by experiments in a 600W Interior permanent magnet synchronous machine (IPMSM) drive system.

Monitoring social networks based on transformation into categorical data

  • Lee, Joo Weon;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.487-498
    • /
    • 2022
  • Social network analysis (SNA) techniques have recently been developed to monitor and detect abnormal behaviors in social networks. As a useful tool for process monitoring, control charts are also useful for network monitoring. In this paper, the degree and closeness centrality measures, in which each has global and local perspectives, respectively, are applied to an exponentially weighted moving average (EWMA) chart and a multinomial cumulative sum (CUSUM) chart for monitoring undirected weighted networks. In general, EWMA charts monitor only one variable in a single chart, whereas multinomial CUSUM charts can monitor a categorical variable, in which several variables are transformed through classification rules, in a single chart. To monitor both degree centrality and closeness centrality simultaneously, we categorize them based on the average of each measure and then apply to the multinomial CUSUM chart. In this case, the global and local attributes of the network can be monitored simultaneously with a single chart. We also evaluate the performance of the proposed procedure through a simulation study.

Optimum Controller Design of a Water Cooler for Machine Tools Based on the State Space Model (상태공간 모델링에 의한 공작기계용 수냉각기의 최적제어기 설계)

  • Jeong, Seok-Kwon;Kim, Sang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.782-790
    • /
    • 2011
  • Typical temperature control methods of a cooler for machine tools are hot-gas bypass and compressor variable speed control. The hot-gas bypass system has been widely used to control the cooler temperature in many general industrial fields. On the contrary, the compressor variable speed control is focused on special fields such as aerospace and high precision machine tools which need high precision control. The variable speed control system usually has two control variables such as target temperature and superheat. In other words, the variable speed control system is basically multi-input multi-output(MIMO) system. In spite of MIMO system, the proportional integral derivative(PID) feedback control methodology that based on single-input single-output (SISO) system is generally used for designing the variable speed control system. Therefore, it is inevitable to describe transfer functions for dynamic behaviors of every controlled variables and decide the PID gains with tremendous iteration process. Moreover, the designed PID gains do not provide optimum system performances. To solve these problems, high performance controller design method based on a state space model is suggested in this paper. An optimum controller is designed to minimize both control errors and energy inputs. This method was more simple to describe dynamic behaviors and easier to design the cooler controller which is MIMO system.

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF

A Study on the Design of Power System Stabilizer using Real Variable Genetic Algorithm (실변수 유전알고리즘을 이용한 전력계통 안정화장치 설계)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.479-485
    • /
    • 2000
  • This paper presents a analysis method for dynamic characteristics of power system using a Genetic-based Power System Stabilizer(PSS). The proposed PSS parameters are optimized using Genetic Algorithm(GA) in order to maintain optimal operation of generator under the various operating conditions. To decrease the computational time, real variable string is adopted. The results tested on a single machined infinite bus system verify that the proposed controller has better dynamic performance than conventional controller.

  • PDF

Design and Implementation of Variable-Rate QPSK Demodulator from Data Flow Representation

  • Lee, Seung-Jun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.139-144
    • /
    • 1998
  • This paper describes the design of a variable rate QPSK demodulator for digital satellite TV system. This true variable-rate demodulator employs a unique architecture to realize an all digital synchronization and detection algorithm. Data-flow based design approach enabled a seamless transition from high level design optimization to physical layout. The demodulator has been integrated with Viterbi decoder, de-interleaver, and Ree-Solomon decoder to make a single chip Digital Video Broadcast (DVB) receiver. The receiver IC has been fabricated with a 0.5mm CMOS TLM process and proved fully functional in a real-world set-up.

  • PDF

VARIABLE SPEED CONSTANT FREQUENCY POWER CONVERSION WITH A SWITCHED RELUCTANCE MACHINE

  • Rim, Geun-Hie;Krishnan, R.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1030-1034
    • /
    • 1993
  • A converter topology which is capable of four-quadrant(motoring and generation) operation is proposed for the variable speed constant frequency(hereafter referred as VSCF) power conversion scheme. The new converter topology for the VSCF power conversion scheme is made of two functional stages. One is converting stage which consists of six switches and six diodes and it interfaces a three-phase 60Hz at supply and a single-phase variable-frequency ac source. The other is the commutating stage though which each phase-winding is energized.

  • PDF

A Composition and Basis Experiment of Single Cylinder Low Speed Diesel Engine for Atkinson Cycle Materialization (앳킨슨사이클 실현을 위한 단기통 저속 디젤기관의 구성과 기초 실험)

  • Jang, Jtaeik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.461-466
    • /
    • 2013
  • In this research, the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engine to the atkinson cycle, and general cycle features were analyzed after comparing these two cycles. That an experimental single cylinder and a long stroke diesel-atkinson engine, of which S/B ratio was more than 3, were manufactured. After evaluating the engine through basic experiments, a diesel engine was converted into the atkinson cycle by constituent VCR (variable compression ratio) device and VVT (variable valve timing) system. The experimental method was to observe compression work reduction effects due to low compression effects from delayed intake valve closing of the early stage atkinson engine. The result, the possibility of increasing compression ratio about each engine load was confirmation by constructing compensate expansion-compression ratio in accordance with the delayed intake valve close.