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Abstract
Social network analysis (SNA) techniques have recently been developed to monitor and detect abnormal

behaviors in social networks. As a useful tool for process monitoring, control charts are also useful for net-
work monitoring. In this paper, the degree and closeness centrality measures, in which each has global and
local perspectives, respectively, are applied to an exponentially weighted moving average (EWMA) chart and a
multinomial cumulative sum (CUSUM) chart for monitoring undirected weighted networks. In general, EWMA
charts monitor only one variable in a single chart, whereas multinomial CUSUM charts can monitor a categorical
variable, in which several variables are transformed through classification rules, in a single chart. To monitor
both degree centrality and closeness centrality simultaneously, we categorize them based on the average of each
measure and then apply to the multinomial CUSUM chart. In this case, the global and local attributes of the
network can be monitored simultaneously with a single chart. We also evaluate the performance of the proposed
procedure through a simulation study.

Keywords: average run length, closeness centrality, degree centrality, exponentially weighted
moving average (EWMA) chart, multinomial cumulative sum (CUSUM) chart, social network mon-
itoring

1. Introduction

Social network analysis (SNA) provides information about social and individual relationships by
graphically and mathematically monitoring global structures and local entities. Network surveillance
applies statistical process monitoring (SPM) to a network and aims to quickly detect network anoma-
lies. The network is monitored using control charts to detect anomalous behavior in each period of
the network data. Therefore, network surveillance can help prevent conflicts and crises in social situa-
tions by identifying global and local perspectives. Many studies have addressed network-surveillance
schemes. For example, Hosseini and Noorossana (2018) compared the performance of detecting
outbreaks by applying the average and standard deviation of degree measures of a network to expo-
nentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts. Wilson et al.
(2019) applied a degree corrected stochastic block model (DCSBM) to Shewhart charts to detect local
and global changes. Yu et al. (2018) proposed a multivariate procedure to monitor an individual’s
propensity by using the Hotelling T 2 chart. Moreover, Yu et al. (2021) compared several monitoring
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methods using the global network summary statistics, the scan-based method proposed by Preibe et
al. (2005), and the model-based methods proposed by Yu et al. (2018) and Wilson et al. (2019).

Networks comprise nodes (vertices) and edges (links), where nodes represent actors or entities
and edges represent communication between nodes. Networks can be divided into unweighted or
weighted networks according to the types of edges. Edges in unweighted networks take a value of
0 or 1 depending on whether two nodes are communicating or not. Edges in weighted networks
take non-negative values such as the number of communications between two nodes. Additionally,
networks can be divided into two main categories: directed and undirected networks depending on
whether the network is directional or not. An undirected network does not consider the direction
of communication between two nodes. For example, given nodes i and j for i , j, communication
between nodes i and j is the same as communication between nodes j and i. Otherwise, it is a directed
network, or digraph. A network graph can be represented by an adjacency matrix that illustrates the
edges between nodes. Network data can be analyzed more easily by mathematically representing the
networks using adjacency matrices.

Centrality measures indicate which node is most important in the network. Freeman (1977, 1978)
proposed degree, closeness, and betweenness centrality measures in unweighted networks. Degree
centrality is the number of edges directly connected to a node and is representative of the node’s
popularity and communication activity. Scott (1991) argued that degree centrality can be regarded as
local centrality. However, closeness and betweenness centralities are considered measures of global
centrality in terms of the distance among various nodes. Closeness and betweenness centralities are
associated with the number of nodes that lie within the shortest distance from all other nodes in the
network, helping clarify the global network structure. Brandes (2001), Newman (2001), and Barrat
et al. (2004) generalized these measures and applied them to weighted networks. Brandes (2001)
and Newman (2001) considered the shortest path algorithm proposed by Dijkstra (1959) under the
assumption that the most critical actor or entity is on the shortest path and can easily access all nodes.
Opsahl et al. (2010) proposed a generalized form that combines the number of edges and their weights
in order to consider both measures in a weighted network. Abassi et al. (2011) discussed the relation-
ship between scholar’s performance and SNA measures using normalized centrality measures. Abassi
et al. (2013) also proposed hybrid centrality measures that combine existing centrality measures to
improve the importance of nodes, and applied them to a co-author network to evaluate the proposed
measures.

Because centrality measures in weighted networks are continuous variables, previous studies on
SNA have generally used continuous statistics to evaluate performance through control charts. How-
ever, if several centrality measures are transformed into one categorical variable through classification,
only a single chart can be used to monitor social networks more effectively. By using this method,
the problem for monitoring social networks using centrality measures turns into that of monitoring
categorical processes. Recently, Perry (2020) classified the observed networks over time into two
categories based on the average values of transitivity and reciprocity measures, and applied them to
an EWMA chart to monitor the hierarchical tendency. Furthermore, he compared the out-of-control
average run length (ARL) performance of the proposed EWMA chart with that of the multinomial
CUSUM chart proposed by Ryan et al. (2011).

A brief explanation of the multinomial CUSUM chart proposed by Ryan et al. (2011) is as fol-
lows: They proposed the multinomial CUSUM chart for monitoring in situations where items were
classified into more than two categories, and they compared with multiple Bernoulli CUSUM charts.
The multinomial CUSUM chart is useful when monitoring more than two categories with specified
direction of out-of-control shifts, and unlike other charts which monitor categorical data, this chart
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does not require aggregation of items into samples.
In this paper, we propose a procedure for creating a categorical variable having four categories

by classifying degree and closeness centrality measures according to their average values in weighted
networks, and then monitoring this variable using the multinomial CUSUM chart. By applying the
four categories to the multinomial CUSUM chart, we can simultaneously monitor both local and
global views of the network. We also compare the performance of the proposed procedure with that
of the EWMA charts using degree centrality and closeness centrality individually.

The next sections are as follows: In Section 2, we define degree and closeness centrality measures,
and in Section 3, we describe the control charts used in the simulations. In Section 4, we propose a
procedure for monitoring one categorical variable transformed from two centrality measures, and in
Section 5, we describe the simulation settings and discuss the simulation results. Finally, we provide
our conclusions in Section 6.

2. Centrality measures

2.1. Degree centrality

Degree centrality indicates the node’s communication activity and popularity. It has the advantage of
being uncomplicated and easy to calculate. Degree is a local centrality measure because it is calculated
based on the number of neighbors of a focal node. Freeman (1977, 1978) defined degree centrality
as the number of directly connected nodes in a binary network. The degree centrality for node i in
unweighted networks is defined as

D(i) =

N∑
j

xi j,

where xi j is a binary value of 1 when nodes i and j interact with each other and 0 otherwise, and N is
the total number of nodes.

However, since this definition does not take into account the weights representing the frequency
of communications or the closeness between nodes, the use of this measure in weighted networks can
lead to significant information loss. Barrat et al. (2004) proposed the degree centrality for node i in
weighted networks as in Equation (2.1) considering weights.

Dw(i) =

N∑
j

wi j, (2.1)

where wi j denotes the weight between nodes i and j.

2.2. Closeness centrality

Closeness centrality is the inverse of the shortest path between nodes, indicating that an efficient node
is close to all the nodes. This centrality measure is related to global centrality. For example, a node
may have a high degree centrality but a low value of closeness centrality in the network because
the node is popular locally but not globally. There has been great interest in defining the shortest
path between nodes. It assumes that the higher the number of intermediate nodes, the higher the
communication cost. For example, a node with many intermediary nodes takes more time to acquire
information, which distorts and delays the communication between nodes.
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Freeman (1977, 1978) proposed the closeness centrality for node i in unweighted networks defined
as

C(i) =

 N∑
j

d(i, j)


−1

,

where d(i, j) is the shortest distance between nodes i and j and is defined as

d(i, j) = min(xig + · · · + xg j)

for intermediary nodes g on paths between node i and j.
However, this measure has the disadvantage of losing a lot of the information contained in weighted

networks. Newman (2001) considered the relationship between the weight and distance by using Di-
jkstra (1959)’s algorithm. The closeness centrality for node i in weighted networks proposed by
Newman (2001) is given by

Cw(i) =

 N∑
j

dw(i, j)


−1

, (2.2)

where dw(i, j) is the shortest distance used Dijkstra’s algorithm and is defined as

dw(i, j) = min
(

1
wig

+ · · · +
1

wg j

)
for intermediary nodes g on paths between node i and j.

3. Control charts

3.1. EWMA chart

The EWMA chart proposed by Roberts (1959) is useful for monitoring and detecting small shifts in
the process parameter. Despite having similar performance to CUSUM charts, EWMA charts are
widely used due to their ease and simplicity of application and implementation.

We define Xt, t = 1, 2, . . . , as the independent observations at time t. The EWMA chart statistic,
the upper control limit (UCL), and the lower control limit (LCL) are defined as follows:

Zt = γ Xt + (1 − γ) Zt−1, (3.1)

UCL = µ0 + Lσ0

√
γ

2 − γ
[
1 − (1 − γ)2t],

LCL = µ0 − Lσ0

√
γ

2 − γ
[
1 − (1 − γ)2t],

where µ0 is the in-control mean, σ0 is the in-control standard deviation of Xt, γ (0 < γ ≤ 1) is the
smoothing coefficient, and L is the factor that determines the width of the control limits. The initial
value of chart statistic, Z0, is usually set to be equal to µ0. For smoothing coefficients, it is well known
that smaller values of γ are better at detecting small changes, and larger values are better at detecting
large changes. If the value of γ is chosen, L can be determined by the practitioner according to the
specified value of in-control ARL, ARL0.
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As t increases, the above control limits converge to the asymptotic limits given by

UCL = µ0 + Lσ0

√
γ

2 − γ
, (3.2)

LCL = µ0 − Lσ0

√
γ

2 − γ
. (3.3)

In this paper, we use these asymtotic control limits to evaluate the performance of EWMA charts.

3.2. Multinomial CUSUM chart

Traditionally, SPM uses Shewhart p-charts and binomial CUSUM charts to monitor the proportion
of non-conforming items in the process. To use these charts, we must wait until the required number
of items (n > 1) are aggregated into samples to monitor the proportion of nonconforming items.
As a result, these charts have the disadvantage of having an inherent delay in detecting shifts in
the proportion, which causes slower detection of process changes. To overcome this disadvantage,
Reynolds and Stoumbos (1999) proposed using a Bernoulli CUSUM chart when a continuous stream
of inspected items is available. The Bernoulli CUSUM chart is a special case of the binomial CUSUM
chart when n = 1.

Although these charts mentioned above can only be used in situations where items are classified
into two categories, there are many situations where items are classified into more than two cate-
gories. For example, instead of classifying items in a process as good or bad, they can be categorized
as good, fair, or bad. Similarly, the diagnosis of posttraumatic patients can be divided into four cate-
gories: survival, minor complications, major complications, and death. Ryan et al. (2011) proposed a
multinomial CUSUM chart to monitor several categories by extending the Bernoulli CUSUM chart.

Let X1, X2, . . . be independent multinomial random variables where Xt = u if the tth item classified
into the uth category, t = 1, 2, . . . , u = 1, 2, . . . , v. Let p0,u and p1,u be the in-control and out-of-control
probabilities of being classified into the uth category, respectively, where p0,u , p1,u,

∑v
u=1 p0,u = 1

and
∑v

u=1 p1,u = 1.
The multinomial CUSUM statistics are defined as

S t = max(0, S t−1 + Rt), t = 1, 2, . . . , (3.4)

where S 0 = 0 and Rt is the log-likelihood ratio score. The values of Rt are

Rt = ln
(

p1,u

p0,u

)
, t = 1, 2, . . . , u = 1, 2, . . . , v, (3.5)

when Xt = u. The multinomial CUSUM chart signals when S t > h, where the control limit, h, can be
determined satifying the specified value of ARL0.

Note that the multinomial CUSUM procedure can be generalized to include samples of size n > 1
(Ryan et al., 2011).

4. Proposed monitoring procedure

Let wi j,t be the number of communications between nodes i and j at time t. In this paper, we assume
that the network is undirected and does not consider any node to communicate with itself, and also
assume that wi j,t follows a Poisson distribution as

wi j,t ∼ Poisson(λ) for i , j,
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where λ represents the in-control mean of weights.
We can calculate degree centralities Dw,t(i) and closeness centralities Cw,t(i) for i = 1, 2, . . . ,N at

time t defined in (2.1) and (2.2), respectively, and then can obtain the average degree centrality Degt

and the average closeness centrality Closet as

Degt =

∑N
i=1 Dw,t(i)

N
, (4.1)

Closet =

∑N
i=1 Cw,t(i)

N
. (4.2)

These average measures can be classified into the following four categories to be applied to the
multinomial CUSUM chart.

(i) Category 1 : Degt ≥ µd and Closet ≥ µc,

(ii) Category 2 : Degt < µd and Closet ≥ µc,

(iii) Category 3 : Degt < µd and Closet < µc,

(iv) Category 4 : Degt ≥ µd and Closet < µc,

where µd is the in-control mean of degree and µc is the in-control mean of closeness which can be
estimated from Phase I samples. In this paper, the values of µd, µc, and p0,u (u = 1, 2, 3, 4) in (3.5) are
estimated from 100,000 simulated networks.

The procedure proposed in this paper is summarized as follows: First, Dw,t(i) and Cw,t(i) are
calculated for N nodes at time t, and Degt and Closet are calculated. After that, by determining
which category these values belong to according to the above classification rule, the Rt in (3.5) and
the multinomial CUSUM statistic, S t, in (3.4) are calculated. Finally, by comparing the value of this
statistic with the control limit h, it is determined whether or not to give a signal.

5. ARL performance

5.1. Simulation settings

Through simulation, the performance of the proposed multinomial CUSUM procedure is evaluated by
comparing it with the EWMA procedure using degree centrality and clossness centrality separately.
In the EWMA procedure, Degt in (4.1) and Closet in (4.2) are used as Xt in (3.1), respectively. The
multinomial CUSUM chart and the EWMA charts are compared based on their ARL values.

The settings of the simulation are determined by considering (i) the network to have N = 30 nodes,
(ii) the in-control mean of weights as λ = 1 and 2, and (iii) in the presence of an anomalous event
within the social network, the mean of weights between K (≤ 30) randomly chosen abnormal nodes to
change from λ to (1 +δ)λ. In our simulations, K, which refers to the number of abnormal nodes, takes
on values of 2, 3, 4, and 6, while δ, which denotes the change in parameter, takes on values of 0.5, 1,
2, 3, 4, 5, 6, 7, and 8. For example, the case where λ = 1, K = 2, and δ = 2 means that among 30
nodes, the weight of two nodes has changed to 3, and the weight of the remaining nodes is 1 without
change.

Note that in order to apply the multinomial CUSUM chart, it is necessary to specify the out-of-
control probabilities of each category, p1,u (u = 1, 2, 3, 4), in (3.5). Table 1 shows the in-control
probabilities, p0,u, estimated from Phase I samples and the out-of-control probabilities, p1,u, desired
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Table 1: The in-control and out-of-control probabilities for categories

λ = 1

p0,1 p0,2 p0,3 p0,4
0.4065 0.0899 0.4206 0.0830

K p1,1 p1,2 p1,3 p1,4
2 0.4445 0.0943 0.3822 0.0790
3 0.5312 0.0974 0.3001 0.0714
4 0.6503 0.0904 0.2036 0.0557
6 0.8927 0.0393 0.0448 0.0232

λ = 2

p0,1 p0,2 p0,3 p0,4
0.4180 0.0777 0.4181 0.0863

K p1,1 p1,2 p1,3 p1,4
2 0.4497 0.0793 0.3879 0.0832
3 0.5068 0.0823 0.3347 0.0763
4 0.5957 0.0804 0.2578 0.0662
6 0.8084 0.0549 0.0988 0.0379

Table 2: Values of L for the EWMA chart and values of h for the multinomial CUSUM chart

EWMA
γ = 0.05, L = 1.878617
γ = 0.10, L = 2.147571
γ = 0.20, L = 2.359552

Multinomial
CUSUM

λ = 1

K = 2 h = 0.69
K = 3 h = 1.68
K = 4 h = 2.41
K = 6 h = 3.146

λ = 2

K = 2 h = 0.58
K = 3 h = 1.30
K = 4 h = 2.05
K = 6 h = 3.15

to be detected. These out-of-control probabilities are set to probabilities of δ = 2 when λ = 1 and to
probabilities of δ = 1 when λ = 2 for each abnormal nodes size K.

To determine the control limits for control charts, the in-control ARL value is set as 100. We
design three different EWMA charts with γ = 0.05, 0.1, and 0.2, and obtain the values of L in (3.2)
and (3.3) using the software provided by Knoth (2021). The control limits, h, for the multinomial
CUSUM chart, are determined using 100,000 simulations. The values of L in (3.2) and (3.3) for the
EWMA chart and the values of h for the multinomial CUSUM chart are displayed in Table 2. As
shown in Table 1, in the multinomial CUSUM chart, since the values of p0,u and p1,u vary according
to λ and K, the values of h satisfying ARL0 = 100 in each case are different. However, in the
EWMA chart, the average centralities in (4.1) and (4.2) approximately follow a normal distribution,
respectively, and L, which represents the width of the control limits, depends only on γ. Therefore,
the values of L satisfying ARL0 = 100 are determined to be the same value for a given γ.

The out-of-control ARL values for the EWMA chart are obtained from 10,000 simulations, while
the values for the multinomial CUSUM chart are obtained from 100,000 simulations.

5.2. Simulation results

We look at how the occurrence of abnormal nodes changes the probability of each category. Figure
1 illustrates a scatterplot of the in-control and out-of-control probabilities for degree and closeness
centralities of λ = 1. In Figure 1(a) shows the scatterplot for the in-control state, and shows that
the probabilities of category 1 and 3 components are similar. However, from Figure 1(b), it can be
seen that when abnormal nodes of K = 4 and δ = 6 occur, the probability of category 1 increases



494 Joo Weon Lee, Jaeheon Lee

(a) (b)
Figure 1: Scatterplots of the in-control and out-of-control probabilities based on degree and closeness centralities

when λ = 1. (a) the in-control probabilities (b) the out-of-control probabilities when K = 4 and δ = 6.

significantly, but that of category 3 decreases significantly. It is found that when K = 2, 3, and 4, the
probabilities of category 1 and 2 increase, while the probabilities of category 3 and 4 decrease. When
K = 6, the probability of category 1 increases, but the probabilities of category 2, 3, and 4 decrease.
Due to the change in the probabilities belonging to each category, the multinomial CUSUM chart can
detect the occurrence of abnormal nodes.

The ARL performance for λ = 1 and λ = 2 are shown in Tables 3 and 4, respectively. In each row
of the tables, the smallest ARL value is shown in boldface.

In Table 3 where λ = 1, the in-control mean of degree is µd = 29.00397, whereas the in-control
mean of closeness is µc = 0.0471556. When K = 2 and δ is not large (δ ≤ 3), the multinomial
CUSUM chart performs better than the EWMA charts. When δ is large, the EWMA chart using
closeness centrality with γ = 0.05 performs better. However, even when δ is large, the performance
of the EWMA chart using degree centrality is not good compared to the multinomial CUSUM chart.
For example, when δ = 4, the ARL for the multinomial CUSUM chart is 38.4, while the ARL for the
EWMA chart using degree centrality with γ = 0.05 is 52.3. The multinomial CUSUM chart performs
better for small δ at K = 3 and 4, but the EWMA charts perform better as δ increases. When K = 6,
the EWMA charts outperform the multinomial CUSUM chart for all the changes. When the abnormal
nodes size is large (K ≥ 4), the overall performance of the EWMA charts using γ = 0.2 is better.

To determine why the multinomial CUSUM chart performs poorly for large K and δ, we examine
the probabilities of four categories for each change, as shown in Table 5 where λ = 1. As mentioned in
Ryan et al. (2011), the multinomial CUSUM chart has a weakness in detecting shifts in misspecified
directions and magnitudes. As K and δ increase, the direction and magnitude of the probabilities
change differently from those specified in Table 1. For example, it can be seen that when K = 3 and
δ = 8, the probability of category 1 increases significantly compared to the magnitude specified in
Table 1, and the probability of category 2 changes in the opposite direction to the direction specified
in Table 1. In addition, when K = 6 and δ is large, the probability of category 1 is significantly larger
than other probabilities. As such, when the probability of one category is representative of the entire
network, the ARL performance of the multinomial CUSUM chart may deteriorate.

In Table 4 where λ = 2, the in-control mean of degree is µd = 57.99715, whereas the in-control
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Table 3: ARL values for EWMA charts, using degree and closeness centralities separately, and multinomial
CUSUM charts when λ = 1

K δ
EWMA Multinomial

CUSUMγ = 0.05 γ = 0.1 γ = 0.2
Degree Closeness Degree Closeness Degree Closeness

2

0.5 100.5 97.0 102.4 98.1 101.2 98.7 90.2
1 95.7 91.7 98.6 93.4 100.7 92.2 81.6
2 82.9 67.7 85.8 70.4 88.8 75.8 62.0
3 66.8 49.9 71.3 54.1 76.5 58.7 47.5
4 52.3 38.3 55.0 40.8 62.1 46.6 38.4
5 42.7 31.4 46.0 32.5 50.7 36.8 33.4
6 34.8 26.0 37.2 26.9 42.2 31.0 30.0
7 28.8 23.1 30.4 23.8 35.1 26.9 27.4
8 24.5 20.9 25.8 21.4 29.2 23.3 24.4

3

0.5 89.5 84.3 92.8 87.0 94.8 89.8 73.6
1 67.2 56.5 69.8 60.2 76.4 64.3 50.2
2 34.8 26.4 36.8 27.4 42.5 30.9 28.4
3 21.4 16.2 21.8 16.1 24.9 17.4 19.5
4 15.1 11.9 14.9 11.4 16.1 12.0 15.0
5 11.6 9.7 11.1 9.0 11.4 9.1 12.7
6 9.4 8.3 8.8 7.7 8.8 7.5 11.2
7 7.9 7.5 7.3 6.9 6.9 6.6 10.3
8 6.9 6.9 6.2 6.2 5.9 5.9 9.6

4

0.5 66.2 61.9 70.5 64.2 75.8 70.2 55.0
1 36.9 29.6 37.1 31.2 42.5 35.6 31.6
2 15.1 12.2 14.9 11.7 16.2 12.1 14.7
3 9.4 7.8 8.8 7.2 8.8 6.9 10.0
4 6.8 6.0 6.2 5.4 5.8 4.9 8.1
5 5.4 5.0 4.8 4.5 4.4 4.0 7.2
6 4.5 4.4 3.9 3.9 3.5 3.5 6.7
7 3.8 4.1 3.4 3.6 3.0 3.2 6.4
8 3.4 3.8 2.9 3.3 2.5 2.9 6.3

6

0.5 26.6 25.3 28.1 26.9 32.1 29.8 31.5
1 11.6 10.6 11.1 10.0 11.5 10.2 13.6
2 5.4 4.9 4.8 4.3 4.4 3.8 6.4
3 3.6 3.4 3.1 3.0 2.7 2.6 5.3
4 2.7 2.8 2.4 2.4 2.0 2.1 5.1
5 2.3 2.4 2.0 2.1 1.7 1.8 5.0
6 2.0 2.2 1.7 1.9 1.4 1.6 5.0
7 1.8 2.1 1.5 1.8 1.2 1.5 5.0
8 1.6 2.0 1.2 1.7 1.1 1.4 5.0

mean of closeness is µc = 0.08057656. Similar to the results in Table 3, the multinomial CUSUM
chart performs better for small values of K and δ, while the EWMA charts perform better for large
values of K or δ. When K or δ are very large, the fact that the performance of the multimomial
CUSUM chart deteriorates still occurs as shown in Table 3.

From the results in Tables 3 and 4, it is recommended to use the multinomial CUSUM chart
when the direction and magnitude of change in category probabilities can be predicted to some extent,
or when the magnitude of change is expected to be small. The advantage of using the multinomial
CUSUM chart is that we can monitor several centrality measures simultaneously instead of monitoring
one centrality measure with a single chart.

6. Conclusions

In recent years, there have been many studies focused on monitoring and detecting changes in SNA
and providing information to help prevent conflicts and crises. Accordingly, the networks were ob-
served over time and the observed networks were monitored by applying control charts. Most studies
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Table 4: ARL values for EWMA charts, using degree and closeness centralities separately, and multinomial
CUSUM charts when λ = 2

K δ
EWMA Multinomial

CUSUMγ = 0.05 γ = 0.1 γ = 0.2
Degree Closeness Degree Closeness Degree Closeness

2

0.5 98.0 99.0 99.5 101.2 100.8 100.5 90.7
1 91.2 91.1 92.1 93.1 95.2 95.4 71.5
2 67.9 58.6 71.2 60.9 76.5 67.3 49.6
3 48.1 37.7 52.7 40.4 58.2 46.7 37.4
4 36.6 27.9 38.6 29.0 44.0 33.5 30.1
5 27.6 22.5 29.6 23.1 34.0 25.9 26.1
6 22.6 19.3 23.7 19.7 27.1 21.8 23.2
7 18.8 17.5 19.1 17.2 21.1 19.1 20.9
8 16.0 15.9 15.9 15.9 17.4 16.9 19.5

3

0.5 79.1 83.5 83.3 84.6 87.0 90.2 60.8
1 48.6 45.1 51.8 47.7 58.9 53.4 38.2
2 22.3 17.8 23.3 17.8 26.7 19.7 19.7
3 14.0 10.9 13.6 10.4 14.6 10.5 14.1
4 9.9 8.3 9.4 7.7 9.5 7.5 11.5
5 7.8 7.0 7.1 6.2 6.9 6.0 10.1
6 6.4 6.2 5.8 5.6 5.3 5.1 9.3
7 5.4 5.6 4.8 5.0 4.4 4.6 8.7
8 4.7 5.3 4.2 4.7 3.7 4.2 8.4

4

0.5 48.8 51.0 52.7 53.7 58.9 59.2 41.0
1 22.3 20.1 23.4 20.1 26.8 22.6 20.6
2 10.0 8.1 9.4 7.6 9.6 7.4 10.3
3 6.3 5.4 5.7 4.9 5.4 4.4 7.8
4 4.7 4.3 4.2 3.8 3.7 3.4 6.8
5 3.8 3.8 3.3 3.3 2.9 2.9 6.4
6 3.2 3.4 2.8 2.9 2.4 2.5 6.2
7 2.8 3.1 2.4 2.7 2.1 2.3 6.1
8 2.4 2.9 2.1 2.6 1.8 2.2 6.1

6

0.5 17.1 17.4 17.5 17.4 19.2 19.0 19.2
1 7.8 7.0 7.2 6.4 6.8 6.0 8.4
2 3.8 3.4 3.3 3.0 2.9 2.6 5.3
3 2.6 2.5 2.3 2.2 1.9 1.9 5.0
4 2.1 2.1 1.8 1.9 1.5 1.5 5.0
5 1.8 1.9 1.5 1.7 1.1 1.3 5.0
6 1.5 1.8 1.1 1.5 1.0 1.2 5.0
7 1.2 1.7 1.0 1.4 1.0 1.1 5.0
8 1.0 1.6 1.0 1.3 1.0 1.1 5.0

that applied control charts individually used continuous measures as statistics. However, when several
continuous measures are classified into one categorical variable and applied to a control chart, there
is an advantage that several measures can be monitored using a single control chart.

In this paper, we proposed a procedure for classifying degree and closeness measures, that rep-
resent local and global perspectives, respectively, based on their average values and detecting the
occurrence of abnormal nodes using the probabilities change of the classified categories. The perfor-
mance of the proposed procedure was compared with that of the EWMA charting procedure using
degree and centrality measures individually through simulation.

From the simulation results, it was found that the multinomial CUSUM chart showed better per-
formance for small changes but poor performance for large changes. When K and δ were large, the
performance of the CUSUM chart deteriorated because the probability of each category changed dif-
ferently from the direction and magnitude specified in advance. Therefore, the proposed procedure is
recommended when the direction and magnitude of change in category probabilities can be predicted
or when it is desired to detect small changes in the social network.

Finally, it would be interesting to study procedures that use measures other than degree and close-



Monitoring social networks based on transformation into categorical data 497

Table 5: Probabilities of categories when λ = 1

K δ p1,1 p1,2 p1,3 p1,4

2

0.5 0.4141 0.0927 0.4100 0.0833
1 0.4226 0.0920 0.4028 0.0826
2 0.4445 0.0943 0.3822 0.0790
3 0.4688 0.0977 0.3572 0.0764
4 0.4929 0.0999 0.3350 0.0722
5 0.5108 0.1008 0.3166 0.0718
6 0.5280 0.0987 0.3030 0.0703
7 0.5442 0.0954 0.2884 0.0720
8 0.5653 0.0924 0.2699 0.0724

3

0.5 0.4315 0.0907 0.3944 0.0834
1 0.4665 0.0922 0.3617 0.0796
2 0.5312 0.0974 0.3001 0.0714
3 0.5920 0.0999 0.2465 0.0616
4 0.6491 0.0944 0.2012 0.0553
5 0.6979 0.0861 0.1636 0.0524
6 0.7431 0.0731 0.1320 0.0518
7 0.7773 0.0612 0.1086 0.0528
8 0.8080 0.0478 0.0888 0.0554

4

0.5 0.4622 0.0888 0.3667 0.0823
1 0.5235 0.0917 0.3089 0.0759
2 0.6503 0.0904 0.2036 0.0557
3 0.7493 0.0791 0.1287 0.0429
4 0.8292 0.0593 0.0772 0.0344
5 0.8882 0.0375 0.0462 0.0282
6 0.9231 0.0214 0.0285 0.0270
7 0.9476 0.0121 0.0158 0.0245
8 0.9632 0.0056 0.0088 0.0225

6

0.5 0.5488 0.0859 0.2855 0.0798
1 0.6902 0.0759 0.1745 0.0595
2 0.8927 0.0393 0.0448 0.0232
3 0.9724 0.0113 0.0083 0.0080
4 0.9938 0.0021 0.0013 0.0028
5 0.9984 0.0002 0.0002 0.0012
6 0.9994 0.0000 0.0000 0.0006
7 0.9998 0.0000 0.0000 0.0002
8 0.9999 0.0000 0.0000 0.0001

ness centrality measures as criteria for categorization. In the future, we will study the classification
procedures using two or more different measures and their performance for various types of change.
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