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1. INTRODUCTION 

  Model Reference Adaptive Controllers with conventional 

continuous adaptation laws has been extensively investigated 

in the literature in two main branches: one assuming full state 

accessibility [7,8,9], and the others assuming accessibility of 

only input and output [3,4]. Continuous adaptation laws are in 

the form of pure integral actions and have some problems such 

as: I. Transient behavior is difficult to analysis.  

  II. Only global (but not asymptotic) stability has been     

     guaranteed.  

  III. Undesirable transient responses and tracking       

     performance.  

  IV. Lack of robustness. 

  The variable structure systems (VSS) have been studied in 

great details in the literatures [6, 10, 11]. The basic concept of 

the variable structure control is that of sliding mode control. 

switching control functions are generally designed to generate 

sliding surfaces, or sliding modes, in the state space [10]. 

When this is attained, the switching functions keep the 

trajectory on the sliding surfaces and the closed loop system 

becomes insensitive, to a certain extent, to parameter 

variations and disturbances.  

  Some authors have applied the variable structure control 

(VSC) to adaptive control, for full states accessible systems 

[2], and for only input – output measurable systems [1, 3, 4]. A 

tutorial account of VSC is presented by Hung [5]. 

  In this article, we proposed a design and analyze a variable 

structure model reference adaptive controller for single input 

multi variable systems. The control law and the general 

structure of switching functions (adaptation laws) are designed 

based on stability criterion. Exponential stability is assured 

and exponential attractiveness to the origin is independent of 

sliding mode be reached. Then the magnitudes of switching 

functions are chosen based on reaching conditions for sliding 

mode. Realization procedure will be easy to perform and the 

controller has good transient behavior and is insensitive with 

respect to input disturbances and parameter variations. With 

the proposed controller, eventually sliding mode always 

occurs.  

2. PROBLEM DEFINITION 

Consider a linear time invariant plant with unknown 

parameters, which their bounds are known. Let the plant be of  

n-th order with accessible states and described by the 

differential equation 

ubAXX (1)

where n n matrix A and vector b are unknown, and (A,b) is 

controllable. 

The reference model is characterized by the linear time 

invariant differential equation  

rmmmm bXAX (2)

where is Am a n n asymptotically stable matrix, bm is a  

known vector, and  r  is a bounded reference input. The 

purpose is to find control  u  such that the state error 

mXXe (3)

exponential tends to zero in a finite time. 

3.VARIABLE STRUCTURE ADAPTIVE 

CONTROLLER

  The solution can be attempted under different assumptions 

regarding the prior information available concerning the plant. 

We consider the following two cases:

Case I. 

  The matrix A is unknown, while the vector b is assumed to 

be known. In this case the vector bm of the reference model 

can be chosen as 
*qbbm                                     (4)

where q* is a known scalar. It is further assumed that an 

unknown m n matrix 
*

 exists such that 

mAbA
*

(5)

I.1 Stability, and switching function design 

  The control  u  to the plant, is generated introducing 

control law 

rqu *
X (6)

where n dimensional raw feedback vector , with the 

elements i  are adjusted using VS approach by designing 

switching functions i  as described in the followings. 

  Subtracting equation (2) from (1), and using equations (4), 

(5) and (6), the error equation is obtained as 

XbeAe m )( *
(7)

  Consider a Lyapunov function of the form 
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PeeV
T

(8)

where P is a positive definite symmetric matrix which satisfies 

the Lyaponov equation 

0QPAPA m

T

m (9)

where Q0 is a positive definite symmetric matrix. 

  Differentiating (8) with respect to time along the trajectory 

(7) yields 

XPebeQeV
TT )(2 *

0

iii

nTT
xPebeQe )(2 *

1i0 (10)

  Now, introducing the switching functions i  as 

*

i,)(sgn ii

T

ii xPeb (11)

and substitute into (10), yields 

iii

T

i

nTT
xxPebPebeQeV ])(sgn[2 *

1i0

][2 *

i1i0 i

T

ii

TnT
xPebxPebeQe  (12)

  The terms in the summation are always positive, therefore 

0V and regarding (8) it can be concluded that e

decreases at least exponentially. 

I.2 Existence of sliding mode

  Here it is shown that the surface 

0PebS
T

(13)

is always a sliding surface for the system. Let examine the 

following reaching conditions [15, 9]. 

0,0 SSS (14)

Regarding equations (7) and (11), we have 

XPbbSePAbSSS
T

m

T )( *

iii

nT

m

T
xPbbSePAbS )( *

1i

i

n

i
ii

T

i

T

m

T
xxPebPbbSePAbS )(sgn)(

1

*

j

n

i
i

T

ii

T

m

T
xxPebPbbSePAbS

1

* )(sgn)(

)(
1

*

1 i

n

i
ii

T
xPbbeS (15)

where 1  is a positive constant. Since e  exponentially 

tends to zero, it can be concluded that if we have 

0tt,0)t(X (16)

then there exists 0tT  such that 

Tt,0SS (17)

  Condition 0S  in the relation (14) is considered here. 

One can writes 

XPbbePAbePbS
T

m

TT )( *

iii

nT

m

T
xPbbePAb )( *

1i

i

n

i
ii

T

i

T

m

T
xxPebPbbePAb )(sgn

1

*
(18)

since e  exponentially tends to zero, and consider to 

equation (16), it can be seen at least one of the terms in the 

summation is nonzero and we have 

TtS for,0 (19)

  Relations (17) and (19) mean that for all t >T, the surface 

0PebS
T

 is a sliding surface. 

I.3 stability in the presence of bounded disturbance

  If a bounded disturbance w(t), acts on the plant input, the 

error equation (7) becomes 

 w)( *
bXbeAe m (20)

  Consider the Lyapunov function (8), we have 

 w2])([2 *

1i0 PbexPebeQeV
T

iii

nTT
(21)

and regard to switching functions i  as defined by equation 

(11), one can write 

][2 *

i1i0 i

T

ii

TnT
xPebxPebeQeV

 w2 Pbe
T

(22)

Now, defining m  and w as

)(wsupw,)(min 0t*

i tiim        (23) 

one can concluded that 

w32

2

1 ePebXeV
T

m (24)

where 1  , 2  , and 3  are positive constants. 

  From relation (24), it is understandable that e should have a 

residual set as 

w4e (25)

where 4  is a positive constant. 

I.4 Existence of sliding mode in the presence of bounded    

   disturbance

  As mentioned in section (I.3), the error equation in the 

presence of bounded disturbance w(t), will be in the form of 

equation (20). 

  In the same manner as followed in section (I.2) one can 

writes

 w)( *
pbbSXPbbSePAbSSS

TT

m

T

 w)(
1

*

1 pbbxPbbeS
T

i

n

i
ii

T

 w1 pbbxPbbeS
T

im

T
(26)

since e  exponentially tends to a residual domain specified 

by relation (25), it can be concluded that if we have 

0tt,
w

)(
m

T
pbb

tX (27)

where  is a positive constant, then there exists  T>t0
such that 

Tt,0SS (28)

  Condition 0S  can be proved in the same manner as 

applied for equations (18) and (19). 

I.5 Average control

  If control signal in equation (6)is written as 

Xu,rquu o*o
(29)

where
ou and rq*

 are variable structure and continuous 

parts of controller, respectively. When sliding mode is 
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occurred, actually the average control 
ou can be used [ ], 

which is the output of first order filter 

)(uuu 1

oo

av

o

av ii

n

i x (30)

where time constant  is sufficiently small. Then the 

average control 
o

avu  can be obtained as 

rquu *o

avav (31)

  The block diagram is presented in figure 1. 

Case II. 
  The matrix A and vector b are assumed to be unknown. It is 

further assumed that there exist an unknown n dimensional 

raw vector 
*

, and a scalar q*  such that 

mAbA
*

(32)

*qbbm (33)

Furthermore, it is assumed that q* may be varied such that  

the sign of q* is not altered. 

II.1 Stability, and switching function design

  The control signal u to the plant is introduced as 

r)(u X (34)

where n dimensional raw feedback vector , with the 

elements i  and scalar  are adjusted using VS approach 

by designing switching functions i  and  as described 

in the followings. 

  Subtracting equation (2) from (1), and using equations (4), 

(5) and (6), the error equation is obtained as 

u)q()( 1** -1

mmm bXbeAe  (35)

  Consider a Lyapunov function of the form as equation (8). 

Differentiating (8) with respect to time along the trajectory 

(35) yields 

XPbeeQeV m

TT )(2 *

0

u)q(2 1*-1

m

T
Pbe (36)

  If the control u in equation (34) be written as 

ruo
X  ,    

ouu (37)

and substituting into (36) one can write 

XPbeeQeV m

TT )(2 *

0

o* u)1q(2
-1

m

T
Pbe

iii

nTT
xPebeQe )(2 *

1i0

o* u)1q(2
-1

m

T
Pbe (38)

Now, introducing the switching functions i  as in (11), and 

the switching function as   

**o qq,)sgn(q)u(sgnq Peb
T

m (39)

and substitute into (38), yields 

][2 *

i1i0 i

T

mii

T

m

nT
xPebxPebeQeV

])sgn(quuqq[2 *oo
-1

*
PebPeb

T

m

T

m     (40)   

The terms in the summation are always positive, and the last 

term is negative, therefore 0V and regarding (8) it can be 

concluded that e  decreases at least exponentially. 

II.2 Existence of sliding mode

  In the followings it is shown that the surface 

0PebS
T

m (41)

is always a sliding surface for the system. Let examine the 

following reaching conditions [15, 9]. 

0,0 SSS (42)

Considering equations (35) and (37), we have 

u)q()( 1** -1

m

T

m

T

mm

T

m pbbSXPbbSePAbSSS

o** u)1q()(
-1

m

T

m

T

mm

T

m pbbSXPbbSePAbS

iii

nT

m

T
xPbbSePAbS )( *

1i

o* u)1q(
-1

m

T

mpbbS

and consider to equations (11)and (39), one can write 

ePAbSSS m

T

m )(

i

n

i
ii

T

mim

T

m xxPebPbbS )(sgn
1

*

}u]1)sgn(q)usgn(qq{[2 o*o-1*
Pebpbb

T

mm

T

m

ePAbS m

T

m )(

i

n

i
i

T

miim

T

m xxPebPbbS
1

* )(sgn

o

1

* u)(sgnqq
-1n

i

T

mm

T

m PebPbbS

)(
1

*

1 i

n

i
iim

T

m xPbbeS

]u)1qq([ o*-1

m

T

mPbbS          (43)   

where 1  is a positive constant. Defining a new vector 

]u[ oTT
XZ (44)

Since e  exponentially tends to zero, it can be concluded 

that if we have 

0tt,0)t(Z (45)

then there exists 0tT  such that 

Tt,0SS (46)

  Condition 0S  in the relation (42) is considered here. 

One can writes 

XPbbePAbePbS m

T

mm

T

m

T

m )( *

u)q( 1*
-1

m

T

m Pbb

XPbbePAb m

T

mm

T

m )( *

o* u)1q(
-1

m

T

mPbb

i

n

i
ii

T

mim

T

mm

T

m xxPebPbbePAb )(sgn
1

*

                      
o* u)1q(

-1

m

T

mPbb    (47)
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since e  exponentially tends to zero, and consider to 

equation (45), it can be seen at least one of the terms in the 

summation or the last term is nonzero and we have 

TtS for,0 (48)

  Relations (42) and (48) mean that for all t >T, the surface 

0PebS
T

m  is a sliding surface. 

II.3 stability in the presence of bounded disturbance

  If a bounded disturbance w(t), acts on the plant input, the 

error equation (35) becomes 

 wu)q()( 1** -1

bbXbeAe mmm (49)

  In the same manner as used in section (II.1) one can writes 

][2 *

i1i0 i

T

mii

T

m

nT
xPebxPebeQeV

])sgn(quuqq[2 *oo
-1

*
PebPeb

T

m

T

m

 w2 Pbe
T

 (50) 

Consider to (23), and defining m  as

)(min *

m                             

(51)

one can concluded that 

w32

2

1 ePebXeV
T

mm

Peb
T

mm u4 (52)

where 1  , 2  , 3  , and 4  are positive constants. 

  Relation (52) means that e should has a residual set as 

w5e (53)

where 5  is a positive constant. 

II.4 Existence of sliding mode in the presence of bounded    

   disturbance

  As mentioned in section (II.3), the error equation in the 

presence of bounded disturbance w(t), will be in the form of 

equation (49). 

  In the same manner as followed in section (II.2) one can 

writes

 w)( *
pbbSXPbbSePAbSSS

T

m

T

mm

T

m

 wu)q( 1*-1

pbbSPbSb
T

mm

T

m

 w)(
1

*

1 pbbxPbbeS
T

mi

n

i
iim

T

m

]u)1qq([ o*-1

m

T

mPbbS  (54)

where 1  is a positive constant. Consider to equation 

(44), and defining m  as 

)]1qq(,[min
-1*

mm (55)

where  defined by (23). Hence one can writes 

 wZ1 pbbPbbeSSS
T

mmm

T

m (56)

since e  exponentially tends to a residual domain specified 

by relation (53), it can be concluded that if we have 

0tt,
w

)(
mm

T

mpbb
tZ (57)

where  is a positive constant, then there exists  T>t0

such that 

Tt,0SS (58)

  Condition 0S  can be proved in the same manner as 

applied for equations (47) and (48). 

II.5 Average control

  When sliding mode is occurred, actually the average control 

avu can be used [ ], which is the output of first order filter 

uuu avav (59)

where time constant  is sufficiently small.         

  The block diagram is presented in figure 2. 

4. SIMULATION RESULTS 

  In this section, simulation results are presented to show the 

performance of the proposed schemes and comparing these 

with the conventional schemes. The example consists of the 

cases I and II, with parameter variations and input disturbance. 

Example
  Consider a single input time-varying system described by 

the equation 

ugsin(t)cos(t) xxx (60)

or in state space 

ubAXX (61)

where 12121 ,,][ xxxxxxX
T

,

g

0
,

cos(t)sin(t)

10
bA (62)

but actually we know that 

1a1,1a1,1a,0a 22211211 (63)

Case I. Parameter g is known ( g = 2, e.g. vector b is known). 

  Choose a reference model described by equation 

r22 xxx mm (64)

or in the state space 

rmmmm bXAX (65)

where
12121

,,][ mmmm

T

mmm xxxxxxX ,

g

0
,

22

10
mm bA (66)

hence, from (4) and (5) it can be concluded that 

g

sin(t)2*

1 ,
g

cos(t)2*

2 ,
g

1
q*

(67)

therefore, 
2

3
Max *

1 ,
2

3
Max *

2 , and with regard to 

equation (11) we can choose ]6.16.1[][ 21 . Thus 

the VS-MRA Controller can be designed using equations (11) 

and (6) for unfiltered, or equations (11) and (46-47) for 

filtered control. System was simulated, responses was 

compared with the responses of system with conventional 

adaptation law as 
TT

Xpeb , and control law 

rqu *
X . The input signal was  t)sin(45.01r ,
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and initial conditions was 
T

X ]11[)0( , and 

T

mX ]00[)0( . Responses are presented in figure 3, for 

filtered control without disturbance, and in figure 4, for 

filtered control in the presence of a disturbance as 

 t)sin(1d .

Case II. Parameter g is unknown (actually  t)sin(2g ,

but we only know that 3g1 ).

  Choose a reference model described by equations (65) and 

(66), hence from equations (32) and (33) it can be concluded 

that sin(t)2*

1 , cos(t)2*

2 ,
sin(t)2

1
q*

therefore 3Max *

1 , 3Max *

2  , and 1qMax *
,

and consider to equations (11) and (39) we can choose 

]13.1.3[][ 21  and 1.1q  . Thus the VS-MRA 

Controller can be designed using equations (11) and (6) for 

unfiltered, or equations (11), (39), (34) and (59) for filtered 

control. System was simulated, and responses was compared 

with the responses of system with conventional adaptation 

laws as 
TT

m Xpeb , and quqq peb
T

m , and 

control law r)(qu X . The input signal was 

 t)sin(45.01r , and initial conditions was 

T
X ]11[)0( , and 

T

mX ]00[)0( . Responses are 

presented in figure 5, for filtered control without disturbance, 

and in figure 6, for filtered control in the presence of a 

disturbance as  t)sin(1d . In this case, the 

conventional controller is unstable. 

5. CONCLUSIONS 

  A variable structure model reference adaptive controller has 

been proposed for SIMO systems. Structure of the switching 

functions was designed based on exponential stability 

requirements. Magnitude of the switching functions then can 

be determined using reaching conditions of sliding mode. For 

the case I, relation (5) is used to determine the bounds on 

elements 
*

i , and these elements must be limited. For the 

case II, relation (31) and (32) are used to determine the bounds 

on elements 
*

i  and 
*q , and these elements must be limited. 

Then the elements 
*

i  can be chosen regarding the 

requirements for existence the sliding mode. 

  This controller has some significant advantages compared 

to the conventional model reference adaptive controller. 

Global exponential stability is proved without requirements on 

persistence of excitation. Specially in the case II, stability of 

the conventional controller is unreliable because related 

Lyapunov function is not unbounded in this case, and only 

uniform stability (not in the large) is implied, (in the example, 

this controller was unstable), whereas the proposed controller 

has excellent performance similar to the case I. Then it was 

shown that, it is always possible to introduce a sliding mode 

into the system. Transient behavior was analyzed and showed 

perfect model following at a finite time. Insensitivity with 

respect to input disturbances was investigated and showed 

preference to the conventional schemes. Simulation was 

presented to clear the theoretical results. 
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      Fig. 1 The block diagram of the system in the case I . 

     Fig. 2 The block diagram of the system in the case II . 
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Fig. 3 case I, filtered control without disturbance.

Fig. 5 case II, filtered control without disturbance.

Fig. 4 case I, filtered control in the presence of a   

        disturbance as  t)sin(1d .

Fig. 6 case II, filtered control in the presence of a   

        disturbance as  t)sin(1d .
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