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Abstract

This paper considers the problem of determining the optimal process mean and
screening specification limits of a surrogate variable associated with product
quality under two-stage screening procedure. In two-stage screening, the
surrogate variable is inspected first to decide whether an item should be accepted,
rejected or additional observations should be taken. If additional observations are
required, the performance variable of interest is then observed to classify the
undecided ii::ms. Assuming that the performance variable and the surrogate
variable are jointly normally distributed, the optimal process mean and the
screening limits are obtained by maximizing the expected profit which includes
selling price, production, reprocessing, inspection and penalty costs. A numerical
example is presented and numerical studies are performed to compare the proposed
two-stage screening procedure with single-stage screening procedures.

Key Words: Process Mean; Screening Specificaticn Limits; Surrogate Variable; Performance
Variable; Screening Procedure
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1. Introduction

As a result of advances in automated-. manufacturing- systems, sensoring
technology and automatic inspection equipment, complete inspections are
increasingly being used in industry in order to improve outgoing product quality.
Many products are inspected to determine whether its quality characteristic
satisfies predetermined acceptance limits. Conforming products are sold at regular
price, whereas all others are reprocessed or sold at discount price. Typical quality
characteristics under consideration are weights, volume, and geometric dimensions.
Products produced by a production process may deviate from the process mean
because of variations in raw materigl, labor and operation conditions. The process
mean may be adjusted to a higher value in order to reduce the proportion of the
nonconforming products. Using a higher process mean, however, may result in a
higher production cost. Consequently, the decision of selecting a process mean
should be based on the tradeoff among production cost, payoff of conforming
items, and the cost incurred due to nonconforming items.

Several researchers have studied this problem. Bettes(1962), Golhar(1987), and
Gothar and Pollack(1988) consider a filling process in which underfilled or
overfilled products are reprocessed at a fixed cost. Hunter and Kartha(1977),
Bisgaard et al.(1984), and Carlsson(1984) study several sales conditions for
products in which the quality characteristic is smaller than the specification limit.
Boucher and Jafari(1991) and Al-Sultan(1994) discuss situations in which the items
are subjected to lot-by-lot acceptance sampling rather than complete inspections.
Elsayed and Chen(1993) and Arcelus and Rahim(1994) determine optimum levels of
process parameters for products with multiple characteristics. Lee and Jang(1997)
and Hong et al.(1999) consider the problem of jointly determining optimum target
values in situations where there are several markets with different price/cost.

In all of these studies, inspection is performed on the quality characteristic of
interest (performance variable). In some situations, it is impossible or not
economical to directly inspect the performance variable. In such cases, the use of
a surrogate variable which is highly correlated with performance variable is an
attractive alternative, especially when inspecting the surrogate variable is relatively
less expensive than inspecting the performance variable. In cement plants, for
example, a performance measure of interest may be the weight of a cement bag,
which is difficult to measure directly due to the high-speed of the packing line.
The mil-ampere (mA) of the load cell is strongly correlated with the weight of a
cement bag and does not require special effort to measure. Hence, it can be used
as the surrogate variable(Bai and Lee [1993]). The idea of selecting the cutoff
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value on surrogate variable has been studied by many researchers. Bai and Lee
(1993) and Tang and Lo(1993) present economic models that determine the process
mean and the screening limit on the surrogate variable when inspection is based
on surrogate variable instead of performance variable.

In applications where quality assurance is critical, the outgoing quality
improvement may be more important than the reduction in the inspection cost.
Since a surrogate variable may not perfectly correlated with performance variable,
some conforming items may be rejected and excluded from shipment while some
nonconforming items may be accepted for shipment. These decision errors are
likely to occur when the value of the surrogate variable is close to the screening
limits. Consequently, in this situation, there may be an economic advantage to
reduce the errors by observing the performance variable even though the
inspection may be expensive. Of course, this can only be done when inspection of
the performance variable is nondestructive. Accordingly, Tang(1988) and Bai et
al.(1995) propose economic two-stage screenings where the surrogate variable is
used in the first stage and the performance variable is used in the second stage.

This paper consider the problem of finding the optimal process mean and
screening limits of a surrogate variable for a filling process under two-stage
screening procedure. In single-stage screening, inspection is performed on the
performance variable of interest or a surrogate variable that is correlated with the
performance variable. In two-stage screening, a surrogate variable is inspected
first to decide whether an item should be accepted, rejected, or additional
observations should be taken. If additional observations are required, the
performance variable is then observed to classify the undecided items. Assuming
that the performance variable and the surrogate variable are jointly normally
distributed, the optimal process mean and screening limits of the surrogate
variable are jointly determined by maximizing the profit function, which involves
selling price, and production, inspection, and penalty costs. In Section 2, two
single-stage-screening procedures are reviewed. A two-stage screening procedure
for a production process is presented and developed methods for finding the
optimal process mean and screening specification limits on the surrogate variable
in Section3. A numerical example and analysis of results are given in Section 4.

2. Single ~Stage Screening Procedure

In this section, two models are reviewed, denoted Models I and II, for single-
stage screening: in Model I, inspection is performed on the performance variable
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Y, in Model 1I, inspection is performed on the surrogate variable X. Models I
and II are considered to explain single-stage screening and compare the
performance of single- and two-stage screenings.

2.1 Model I: Inspection is performed on Y

Let Y be a performance variable representing the quality characteristic of
interest and L be the lower specification limit of Y. Suppose that Y is normally
distributed with an unknown process mean g, and known variance o¢>. All items
are inspected prior to shipment to determine whether they meet a lower
specification limit L on Y. Let @« and » denote the selling price and
reprocessing cost, respectively, where items with Y=L are sold at a fixed price
a to the primary market, and items with Y{(L are refilled at a reprocessing cost
7({a). The production cost per item is linear in Y, that is, b+cy where b and
¢ are constants. Let ¢, denote the performance inspection cost per item. The

profit function Pg; per item is

a—b—cy—c,, Y=L,
Pg ;= 1
E(Ps;)—r— c,, Y<L.

The profit function given equation (1) is the same as that of Golhar(1987). See
Golhar(1987) for detailed derivations of the expected profit and the optimal process
mean.

2.2 Model 1I : Inspection is performed on the correlated variable X
Let X be a variable that is positively correlated with Y. If X is negatively
correlated with Y, we then use —X as the screening variable rather than X.
We assume that, for given Y=y, X is normally distributed with mean A;+Asy
and variance o? where A, and A, are known constants. The constant A, is

assumed to be positive so that X and Y have a positive relationship. It can be
easily shown that (X, Y) follows a bivariate normal distribution with mean
vector, covariance matrix, and correlation coefficient

Ayoi+ ot poN ke + o?

= ALt Ay, 1), Lo={126%/ A%+ & 1/2
(1= A1+ Aapty, 12,) pcy\//i—gom 2 e={A305/(A305+ o)}
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(see Tang and Lo[1993}). Let x be the screening limit on the decision variable X.
If X=y we conclude that Y=L, and the item is sold to the primary market at a
fixed price a. Since X is not perfectly correlated with Y, some items with ¥Y<(L
may be sold to the primary market. The errors of accepting items with Y<L
incur penalty cost 4 which includes costs of identifying and handling the
nonconforming items, and service and replacement costs. If X<y, the item is
refilled at a reprocessing cost 7. The production cost per item is the same as on
the previous model, and ¢, denotes the inspection cost per item for X. Then, the

profit function Ps ; per item is

a—b~cy— c,, X=yx, Y2L,
Psp=| a—b—cy— c,—d, X>yx Y<L, 2)
‘ E(Psp)—7— c,, X<z

The profit function given equation (2) is the same as that of Bai and Lee(1993).
See Bai and Lee(1993) for detailed derivations of the expected profit and the
optimal process mean and the screening specification limit.

3. Model III : Two-Stage Screening Procedure

Since X 1is not perfectly correlated with Y, decision errors that reject
conforming items or accept nonconforming items may occur. To minimize these
errors, we present a two-stage screening in which a correlated variable X is
used in the first stage and a performance variable Y is used in the second stage.
The two-stage screening procedure is as follows:

First stage: Take a measurement y of X for each incoming item. The item Iis
(i) accepted if x=w, (ii) undecided if w,<x<w, and (c) rejected if x<ws,,
where w,2w,.

Second stage: Observe y of Y for the undecided item and (i) accept if y=1L,
and (ii) reject if y<L.

The screening limits for X are @, and w,;. Note that there are no

misclassification errors at the second stage because all the undecided items are
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inspected with the performance variable. The profit function Pz is

a—b—cy— ¢,, Xz w,, Y=L,
a—b—cy— ¢c,—d, X2 w,, Y<L,
Prm= a—b—cy— c,— ¢y, w,<X< w,, Y=L, 3)

E(Prm—7r— ¢ci—c,, 0;<X<w, Y<L,

E(Pr_m)"’f—’ Cy, X< W,
Then the expected profit per item is given by

E(P)=a—b+ r"%[ ¢, t+d¥(5,,— 8 —p)+r+ c,(Ony)—0(n)) @

+ o (L+80,)0() + 008~ + | LS sz ) |

where 8= (u,— L)/ o, and 7,=(u,~w;)/ 0, i=1, 2, a=®p—8 —p)+ W5y, 6,0),
B(z)=(L+806,+p0,2)X(8+02)N1—0") +o/ 1—p*¢((—8~pz)N 1—0?),

#(+) and O(-) are the standard normal density and distribution functions, and
(-, ;0 1s the standardized bivariate normal distribution function with

correlation coefficient p, respectively. See Appendix for detailed derivation.

The optimal values 8*, 7] and #; can be obtained by maximizing E(Pr m). If

E(Py ) is a unimodal function of & and 7;, then the optimal values & and 7}
can be obtained by equating the derivatives of E(Pz ) with respect & and 7;

(i=1, 2) to zero and solving the resulting eguations (5)-(7) simultaneously.
—dd(ni— 80V 1-p)¢(8) +ca,0(7})

_ Ley= B 0(n3 =8 p)/V1=0")—®((n] — 8" o))V 1—0°)}4(8")
(8" — 730V 1—p%)

+cf__;‘{ 0,008 +02)N1—p")+ L8 +p2)/V1-0)V1-0* }#(2)dz =0,
(5)
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do((— 8" + i)V 1—0%) — c,+ c{(L+ 8%0,)—po,n} — B(—n}))
6)
_ (ey=cB=m )0~ +nip/N1-0") _
o((8"— 930N 1— 0%)

0 y

alecy—cB(—73)) —{c, +d¥(ni,— 8" ~p) + r+c,(I(73)— &7 ?1)) -

+c(L+68"0,)0(n])+p0,8(n1)+ f_:l, ¢(2)/5’(z)d2}@((8'— 7o)V 1—p%=0.

It is difficult to show analytically that equations (5)-(7) have a unique solution
or to find closed-form solution since the left-hand sides of equations (5)-(7) have
(), 0(:), ¥(+,  ;0), and integral equation. Numerical studies over a wide
range of parameter values of (e, 0,,¢, ¢, ¢y, d, 7), however, indicate that
equations (5)-(7) have a unique solution, the Hessian matrix at (8", 71, 73) is
negative definite and~ (6’ , 71, 73) represents a maximum point. Therefore, the
optimal values §&°, 7] aﬁd 73 can be obtained by solving equations (5)-(7)
simultaneously and a computational approach such as Gauss-Siedels iterative

method can be used to obtain &, 7] and 7;. The optimal process mean g, and

the screening specification limits ] and w3; of X are obtained by

uy=L+80,, (8)
CU;=#X_77;01, (9)
Wy = py— 73 Oy (10)

4. An Ilustrative Example

In this section, an illustrative example that originally appeared in Bai and Lee
(1993) is presented to illustrate the optimal solution procedures. Numerical studies
are also performed to investigate the effects of o¢,, o and cost parameters.
IMSL(1987) subroutines such as DNORDF, DBNRDF and DQDAG are used to
evaluate the standard univariate and bivariate normal distribution functions and
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integration respectively.

4.1 Description of the example

Consider a packiﬁg plani of cement factdry. The plant consists of two
processes; a filling process and an inspection process. Each cement bag processed
by the filling machine is moved to the loading and dispatching phases on a
conveyor belt. Continuous weighing feeders (CWFs) perform inspection. A CWF
measures the mA (mil-ampere) X of the load cell of the cement bag. that is
positively correlated with the weight Y of the cement bag. From theoretical
considerations and past experience, it is known that the variance of 7Y,
02=(1.25kg)?, and that X for given Y=y is normally distributed with mean
4.0+0.08y and variance (0.05mA)% That is, X and Y are jointly normally
distributed, with unknown means (g, #,), known variances o%=(0.112mA)?
02=(1.25kg)? and correlation coefficient p=0.894. The lower specification limit

of the weight is marked on every bag as 40kg. Suppose that the cost components
are 2=$3.0, »=$0.18, »=80.1, ¢=$0.06, ¢,=9%0.04, ¢,=%0.004, and 4=4$6.0.

For the two-stage screening procedure, we obtain §"=1.330, 7;=—0.257 and
75 =2.700 are from equations (5)-(7). Therefore the optimal process mean and

screening specification limits for X are
p¢3=L+806,=40.0+(1.330%1.25) =41.662(ke),
@ = py— 170, =4.0+0.08x41.662 — (—0.257 x0.112) = 7.304(mA),
w 5= ty—710,=4.0+0.08x41.662 —(2.700 x0.112) = 7.031(mA),
and E(P)=3$0.3438.

4.2 Numerical studies
In the same example, we obtain the following result for Models 1 and II,

k1 ,=41.726(kg), and E(P)=$0.3019,

un,=41.726(kg), x'=7.239(mA) and E(Pp) =$0.3067,
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where x" is optimal screening specification limit of Model II.

These results agree with our intuition that the expected profits for Models 11
and III are higher than the single-stage screening procedures. In applications
where quality assurance is critical, the outgoing quality improvement may be more
important than the reduction in the inspection cost. Since a surrogate variable is
not perfectly correlated with quality characteristic, some conforming items may be
rejected and excluded from shipment while some nonconforming items may be
accepted for shipment. These decision errors are likely to occur when the value of
a surrogate variable is close to the screening specification limits. Consequently, in
this situation, there may be an economic advantage to reduce the errors by using
two-stage screening procedure. However, two-stage screening is somewhat
complex to implement. In some cases, it is impossible or not economical to
directly inspect the performance variable. In these situations, Model II can be
effectively used. We conduct numerical studies to investigate the effects of the
parameters (o, 0,,c¢, ¢;, d, 7).

(i) Effects of o,:E(P;),E(Py) and E(Py) for the above example are shown in
<Table 1> for selected values of g, for 025 (0.25) 350, the expected profit
decreases as o, increases. The computational results agree with our intuition that
expected profit E(P;) for the two-stage screening is somewhat higher than that
of the single-stage screenings. E(Ppy) is higher than E(P;) if o, takes small
values, but E(Pp) is lower than E(P;) if o, takes large values. It is also shown

* .
that u, increases as o, increases.

(ii) Eﬁects";of ¢, E(Pr), E(Py) and E(Pp) for the above example are shown in
<Figure 1> for selected values of ¢, for 0.01 (0.005) 0.07. The expected profit
E(Py) for the two-stage screening is somewhat higher than that of the
single-stage screening. The difference increases as ¢, increases. E(P;) is higher
than E(Pj if ¢, takes small values, but E(P;) is lower than E(Pp) if c, takes

large values. The inspection proportion of stage 2 is given in <Figure 2> for
selected values of ¢, or 0.01 (0.005) 0.07. The computational results agree with

our intuition that the inspection proportion of stage 2 tends to decrease asc,

increases.
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< Table 1> Effects of o,

Model 1 Model II Model I

o g, | E®PY | u, | EPD e E(Pp)
0.25 40.329 04147 40.680 0.4492 40572 0.4541
0.50 40.662 0.3923 41.207 0.4102 40.945 0.4218
0.75 40.997 0.3697 41.667 0.3742 41.231 0.3936
1.00 41.334 0.3471 42.081 0.3404 41.469 0.3678
1.25 41.674 0.3243 42.461 0.3080 41.665 0.3438
1.50 42.017 0.3014 42813 0.2769 41.836 03212
1.75 42.362 0.2784 43.142 0.2467 41983 0.2997
2.00 42.709 0.2553 43.451 0.2174 42.106 0.2790
2.25 43.059 0.2321 43.742 0.1888 42218 0.2590
2.50 43.410 0.2088 44,016 0.1609 42315 0.2397
275 43.764 0.18%4 44277 0.1335 42.405 0.2209
3.00 44,120 0.1619 44525 0.1067 42.479 0.2026
3.25 44.477 0.1383 44.760 0.0803 42,533 0.1847
350 44 837 0.1146 44,984 0.0544 43.596 0.1672
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< Figure 1 > Expected Profits as a function of ¢,
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< Figure 2 > Proportion of inspection as a function of ¢,

(iii) Effects of p: The expected profit per item and the optimal screening
specification limits on X are given in <Figures 3> and 4 for selected values of p
[0.50(0.05) 0.95,099) <Figure 3> shows that E(Py) and E(Pp) increase as p
increase. E(Pp) is higher than E(P;) and the difference between E(Pp) and
E(Py) tends to decrease as p increases; these computational results agree with

our intuition. w] tends to decrease and w; tends to increase as o increases.
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8 —m— Model Il
§ g Model |
>
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0.5 0.85 0.6 065 0.7 0.75 0.8 0.85 0.9 0.9 0.9

{ p

< Figure 3 > Expected profits as a function of p
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Screening Specification Limits
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< Figure 4 > Screening specification limits for two-stage screening procedure
as a function of p

(iv) Effects of using improper cost factors: It is sometimes difficult to obtain
accurate estimates of cost parameters (c, c,, d, r). Use incorrect values for these
parameters, (u), @], @3) will not guarantee the optimality of the procedure. As a

result, the expected profit is expected to be lower than the expected profit with
true values. To study the sensitivity of Model III to the changes in cost
parameters, the percentage decrease (PD) is given in <Figure 5> for selected
values of ¢,c¢,,d and r keeping the remaining parameters constant. PD and PE

are expressed as

_ E(Ppm)’ —E(Pm)
PD= E(Py)

x100(%)

incorrect values of (¢, ¢y, d, 7)— true values of (¢, ¢c,,d,7) .
true values of (¢, c,,d, 7) x (100%)

PE=
where E(Pp)* and E(Py) are the expected profit obtained by using the actual
value and incorrect cost parameters, respectively. <Figure 5> indicates that PD is
more affected by ¢ than by c¢,,d and », however, Model IIl is robust to the

changes in cost parameters because PD is less than 2%.
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< Figure 5 > Graph of PD versus PE for Cost Factors

5. Conclusions

An economic two-stage screening procedure is presented using a performance
and surrogate variable for the filling processes, and reviewed two single-stage
screening procedures to explain single-stage screening and compare the
performance of single- and two-stage screeing procedures. Assuming that the
quality characteristic of interest and surrogate variable are jointly normally
distributed, the optimal process mean and the screening limits are obtained by
maximizing the expected profit which includes selling price, production,
reprocessing, inspection and penalty costs. The optimal solution is not given in a
closed form expression. Using software such as FORTRAN and IMSL libraries,
however, it can be obtained by a numerical search algorithm such as Gauss-
Siedels iterative method without difficulty.

Numerical analyses show that the expected profit for the two-stage screening
procedure is somewhat higher than that of the single screening procedure based
on performance variable and the difference increases as ¢, increases. Expected
profit for the two-stage screening procedure is higher than that of single
screening procedure based on surrogate variable and the difference between two
and single-stage screening procedures tends to decrease as po increases. Expected
profit for single-stage screening procedure based on performance variable is higher
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than that of single-stage screening procedure based on surrogate variable if c,

takes small values, but the expected profit for single-stage screening procedure
based on performance vanable 1s lower than that of smgle stage screening
procedure based on surrogate vanable if cy takes large values The two-stage

screening procedure is robust to the changes in the cost parameters. Expected
profit for Models I, I and IIl decreases as o, increases, and the process mean

tends to increase as o, increases.

Appendix : Derivation of Equation (4)

The expected profit per item is given by

E(P)=f:f:o(a—b—cy—cx)f(x,y)dydx+ f:f_:(a-b—cw—cx—d)f(x.y)dydx
+ 7 [T em e vt [ [ (EPY=r—cm e)f(x, Dy

+ f_w;f_wm(E(P)“f— ¢ )f(x, wdydx. (A1)

Using the following relationships

fa:‘f_l-mg(x,y)dydx= U(— 8,,7; —p)—T(— 8,7, —0),
f:‘f;g(x,y)dydx= T(— 8;,—n;0—0(— 6,,—7; 0,

SO e s pave= [ o282z,

after some computation, equation (A.l) can be rewritten as equation (4)
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