• Title/Summary/Keyword: single objective

Search Result 2,287, Processing Time 0.025 seconds

SOLVING BI-OBJECTIVE TRANSPORTATION PROBLEM UNDER NEUTROSOPHIC ENVIRONMENT

  • S. SANDHIYA;ANURADHA DHANAPAL
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.831-854
    • /
    • 2024
  • The transportation problem (TP) is one of the earliest and the most significant implementations of linear programming problem (LPP). It is a specific type of LPP that mostly works with logistics and it is connected to day-to-day activities in our everyday lives. Nowadays decision makers (DM's) aim to reduce the transporting expenses and simultaneously aim to reduce the transporting time of the distribution system so the bi-objective transportation problem (BOTP) is established in the research. In real life, the transportation parameters are naturally uncertain due to insufficient data, poor judgement and circumstances in the environment, etc. In view of this, neutrosophic bi-objective transportation problem (NBOTP) is introduced in this paper. By introducing single-valued trapezoidal neutrosophic numbers (SVTrNNs) to the co-efficient of the objective function, supply and demand constraints, the problem is formulated. The DM's aim is to determine the optimal compromise solution for NBOTP. The extended weighted possibility mean for single-valued trapezoidal neutrosophic numbers based on [40] is proposed to transform the single-valued trapezoidal neutrosophic BOTP (SVTrNBOTP) into its deterministic BOTP. The transformed deterministic BOTP is then solved using the dripping method [10]. Numerical examples are provided to illustrate the applicability, effectiveness and usefulness of the solution approach. A sensitivity analysis (SA) determines the sensitivity ranges for the objective functions of deterministic BOTP. Finally, the obtained optimal compromise solution from the proposed approach provides a better result as compared to the existing approaches and conclusions are discussed for future research.

A New Approach to Multi-objective Error Correcting Code Design Method (다목적 Error Correcting Code의 새로운 설계방법)

  • Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.611-616
    • /
    • 2008
  • Error correcting codes (ECCs) are commonly used to protect against the soft errors. Single error correcting and double error detecting (SEC-DED) codes are generally used for this purpose. The proposed approach in this paper selectively reduced power consumption, delay, and area in single-error correcting, double error-detecting checker circuits that perform memory error correction. The multi-objective genetic algorithm is employed to solve the non -linear optimization problem. The proposed method allows that user can choose one of different non-dominated solutions depending on which consideration is important among them. Because we use multi-objective genetic algorithm, we can find various dominated solutions. Therefore, we can choose the ECC according to the important factor of the power, delay and area. The method is applied to odd-column weight Hsiao code which is well- known ECC code and experiments were performed to show the performance of the proposed method.

Design Optimization of Single-Stage Launch Vehicle Using Hybrid Rocket Engine

  • Kanazaki, Masahiro;Ariyairt, Atthaphon;Yoda, Hideyuki;Ito, Kazuma;Chiba, Kazuhisa;Kitagawa, Koki;Shimada, Toru
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.29-33
    • /
    • 2015
  • The multidisciplinary design optimization (MDO) of a launch vehicle (LV) with a hybrid rocket engine (HRE) was carried out to investigate the ability of an HRE for a single-stage LV. The non-dominated sorting genetic algorithm-II (NSGA-II) was employed to solve two design problems. The design problems were formulated as two-objective cases involving maximization of the downrange distance over the target flight altitude and minimization of the gross weight, for two target altitudes: 50.0 km and 100.0 km. Each objective function was empirically estimated. Several non-dominated solutions were obtained using the NSGA-II for each design problem, and in each case, a trade-off was observed between the two objective functions. The results for the two design problem indicate that economical performance of the LV is limited with the HRE in terms of the maximum downrange distances achievable. The LV geometries determined from the non-dominated solutions were examined.

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.

Development of Pareto Artificial Life Optimization Algorithm (파레토 인공생명 최적화 알고리듬의 제안)

  • Song, Jin-Dae;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1358-1368
    • /
    • 2006
  • This paper proposes a Pareto artificial life algorithm for solving multi-objective optimization problems. The artificial life algorithm for optimization problem with a single objective function is improved to handle Pareto optimization problem through incorporating the new method to estimate the fitness value for a solution and the Pareto list to memorize and to improve the Pareto optimal set. The proposed algorithm was applied to the optimum design of a journal bearing which has two objective functions. The Pareto front and the optimal solution set for the application were presented to give the possible solutions to a decision maker or a designer. Furthermore, the relation between linearly combined single-objective optimization problem and Pareto optimization problem has been studied.

Multiobjective fuzzy control system using reinforcement learning

  • Oh, Kang-Dong;Bien Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.110.4-110
    • /
    • 2002
  • In practical control area, there are many examples with multiple objectives which may conflict or compete with each other like overhead crane control, automatic train operation, and refuse incinerator plant control, etc. These kinds of control problems are called multiobjective control problems, where it is difficult to provide the desired performance with control strategies based on single-objective optimization. Because the conventional control theories usually treat the control problem as the single objective optimization problem , the methods are not adequate to treat the multiobjective control problems. Particularly, in case of large scale systems or ill-defined systems, the multiple obj..

  • PDF

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

A Link-Based Label Correcting Multi-Objective Shortest Paths Algorithm in Multi-Modal Transit Networks (복합대중교통망의 링크표지갱신 다목적 경로탐색)

  • Lee, Mee-Young;Kim, Hyung-Chul;Park, Dong-Joo;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2008
  • Generally, optimum shortest path algorithms adopt single attribute objective among several attributes such as travel time, travel cost, travel fare and travel distance. On the other hand, multi-objective shortest path algorithms find the shortest paths in consideration with multi-objectives. Up to recently, the most of all researches about multi-objective shortest paths are proceeded only in single transportation mode networks. Although, there are some papers about multi-objective shortest paths with multi-modal transportation networks, they did not consider transfer problems in the optimal solution level. In particular, dynamic programming method was not dealt in multi-objective shortest path problems in multi-modal transportation networks. In this study, we propose a multi-objective shortest path algorithm including dynamic programming in order to find optimal solution in multi-modal transportation networks. That algorithm is based on two-objective node-based label correcting algorithm proposed by Skriver and Andersen in 2000 and transfer can be reflected without network expansion in this paper. In addition, we use non-dominated paths and tree sets as labels in order to improve effectiveness of searching non-dominated paths. We also classifies path finding attributes into transfer and link travel attribute in limited transit networks. Lastly, the calculation process of proposed algorithm is checked by computer programming in a small-scaled multi-modal transportation network.

Multi-objective durability and layout design of fabric braided braking hose in cyclic motion

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.403-413
    • /
    • 2017
  • The fabric braided braking hose that delivers the driver's braking force to brake cylinder undergoes the large deformation cyclic motion according to the steering and bump/rebound motions of vehicle. The cyclic large deformation of braking hose may give rise to two critical problems: the interference with other adjacent vehicle parts and the micro cracking stemming from the fatigue damage accumulation. Hence, both the hose deformation and the fatigue damage become the critical issue in the design of braking hose. In this context, this paper introduces a multi-objective optimization method for minimizing the both quantities. The total length of hose and the helix angles of fabric braided composite layers are chosen for the design variables, and the maximum hose deformation and the critical fatigue life cycle are defined by the individual single objective functions. The trade-off between two single objective functions is made by introducing the weighting factors. The proposed optimization method is validated and the improvement of initial hose design is examined through the benchmark simulation. Furthermore, the dependence of optimum solutions on the weighting factors is also investigated.

Multi-objective Optimization Model with AHP Decision-making for Cloud Service Composition

  • Liu, Li;Zhang, Miao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3293-3311
    • /
    • 2015
  • Cloud services are required to be composed as a single service to fulfill the workflow applications. Service composition in Cloud raises new challenges caused by the diversity of users with different QoS requirements and vague preferences, as well as the development of cloud computing having geographically distributed characteristics. So the selection of the best service composition is a complex problem and it faces trade-off among various QoS criteria. In this paper, we propose a Cloud service composition approach based on evolutionary algorithms, i.e., NSGA-II and MOPSO. We utilize the combination of multi-objective evolutionary approaches and Decision-Making method (AHP) to solve Cloud service composition optimization problem. The weights generated from AHP are applied to the Crowding Distance calculations of the above two evolutionary algorithms. Our algorithm beats single-objective algorithms on the optimization ability. And compared with general multi-objective algorithms, it is able to precisely capture the users' preferences. The results of the simulation also show that our approach can achieve a better scalability.