Browse > Article
http://dx.doi.org/10.12989/sem.2022.81.6.677

Optimal seismic retrofit design method for asymmetric soft first-story structures  

Dereje, Assefa Jonathan (Department of Global Smart City, Sungkyunkwan University)
Kim, Jinkoo (Department of Global Smart City, Sungkyunkwan University)
Publication Information
Structural Engineering and Mechanics / v.81, no.6, 2022 , pp. 677-689 More about this Journal
Abstract
Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.
Keywords
genetic algorithm optimization; multi objective optimization; seismic retrofit; slit dampers; soft first-story;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Lin, W.H. and Chopra, A.K. (2001), "Understanding and predicting effects of supplemental viscous damping on seismic response of asymmetric one-storey systems", Earthq. Eng. Struct. Dyn., 30(10), 1475-1494. https://doi.org/10.1002/eqe.73.   DOI
2 Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129-142. https://doi.org/10.12989/sem.2021.80.2.129.   DOI
3 Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct., 39(5), 645-664. https://doi.org/10.12989/scs.2021.39.5.645.   DOI
4 Kim, J. and Bang, S. (2002), "Optimum distribution of added viscoelastic dampers for mitigation of torsional responses of plan-wise asymmetric structures", Eng. Struct., 24(10), 1257-1269. https://doi.org/10.1016/S0141-0296(02)00046-9.   DOI
5 Kim, J. and Jeong, J. (2016), "Seismic retrofit of asymmetric structures using steel plate slit dampers", J. Constr. Steel Res., 120, 232-244. https://doi.org/10.1016/j.jcsr.2016.02.001.   DOI
6 Yousef-beik, S.M.M., Bagheri, H., Veismoradi, S., Zarnani, P., Hashemi, A. and Quenneville, P. (2020), "Seismic performance improvement of conventional timber brace using re-centring friction connection", Struct., 26, 958-968. https://doi.org/10.1016/j.istruc.2020.05.029.   DOI
7 Blank, J. and Deb, K. (2020), "pymoo: Multi-objective optimization in python", IEEE Access, 8, 89497-89509. https://doi.org/10.1109/ACCESS.2020.2990567.   DOI
8 Beyer, K., Dazio, A. and Priestley, M.J.N. (2008), "Inelastic wide-column models for U-shaped reinforced concrete walls", J. Earthq. Eng., 12(S1), 1-33. https://doi.org/10.1080/13632460801922571.   DOI
9 Choi, S.W., Kim, Y. and Park, H.S. (2014), "Multi-objective seismic retrofit method for using FRP jackets in shear-critical reinforced concrete frames", Compos. Part B: Eng., 56, 207-216. https://doi.org/10.1016/j.compositesb.2013.08.049.   DOI
10 McKenna, F., Scott, M.H. and Fenves, G.L. (2010), "Nonlinear finite-element analysis software architecture using object composition", J. Comput. Civil Eng., 24(1), 95-107. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000002.   DOI
11 MacLeod, I.A. (1973), "Analysis of shear wall buildings by the frame method", Proc. Inst. Civil Eng., 55(3), 593-603. https://doi.org/10.1680/iicep.1973.4691.   DOI
12 Javidan, M.M. and Kim, J. (2019), "Seismic retrofit of soft-first-story structures using rotational friction dampers", J. Struct. Eng., 145(12), 04019162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002433.   DOI
13 Kim, Y., Lim, S.A. and Park, H.S. (2020), "Optimal seismic retrofit method for reinforced concrete columns with wing walls", Eng. Struct., 210, 110390. https://doi.org/10.1016/j.engstruct.2020.110390.   DOI
14 Lopez Garcia, D. and Soong, T.T. (2002), "Efficiency of a simple approach to damper allocation in MDOF structures", J. Struct. Control, 9, 19-30. https://doi.org/10.1002/stc.3.   DOI
15 Chan, R.W. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005.   DOI
16 Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/scs.2020.37.3.259.   DOI
17 Noureldin, M., Ahmed, S. and Kim, J. (2021), "Self-centering steel slotted friction device for seismic retrofit of beam-column joints", Steel Compos. Struct., 41(1), 13-30. https://doi.org/10.12989/scs.2021.41.1.013.   DOI
18 Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Struct., 22, 186-199. https://doi.org/10.1016/j.istruc.2019.07.014.   DOI
19 Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.   DOI
20 Naeem, A. and Kim, J. (2019), "Seismic performance evaluation of a multi-slit damper", Eng. Struct., 189, 332-346. https://doi.org/10.1016/j.engstruct.2019.03.107.   DOI
21 NourEldin, M., Naeem, A. and Kim, J. (2019), "Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy-based hybrid damper", Adv. Struct. Eng., 22(1), 3-16. https://doi.org/10.1177/1369433218773487.   DOI
22 Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/scs.2020.36.2.163.   DOI
23 Zhang, R.H. and Soong, T.T. (1992), "Seismic design of viscoelastic dampers for structural applications", J. Struct. Eng., 118(5), 1375-1392. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1375).   DOI
24 ASCE 7 (2017), Minimum Design Loads and Associated Criteria for Buildings and other Structures, American Society of Civil Engineers.
25 Clough, R.W., King, I.P. and Wilson, E.L. (1964), "Structural analysis of multistory buildings", J. Struct. Div., 90(3), 19-34. https://doi.org/10.1061/JSDEAG.0001087.   DOI
26 Sahoo, D.R. and Rai, D.C. (2013), "Design and evaluation of seismic strengthening techniques for reinforced concrete frames with soft ground story", Eng. Struct., 56, 1933-1944. https://doi.org/10.1016/j.engstruct.2013.08.018.   DOI
27 ACI (2005), Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute.
28 Agha Beigi, H., Christopoulos, C., Sullivan, T. and Calvi, M. (2015), "Seismic response of a case study soft story frame retrofitted using a GIB system", Earthq. Eng. Struct. Dyn., 44(7), 997-1014. https://doi.org/10.1002/eqe.2496.   DOI
29 Alam, Z., Zhang, C. and Samali, B. (2020), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19(1), 223-237. https://doi.org/10.1007/s11803-020-0558-x.   DOI
30 Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S., ... & Donahue, J.L. (2013), "Peer nga-west2 database".
31 Azandariani, M.G., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.   DOI
32 Azandariani, M.G., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Azandariani, A.G. (2021), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Struct., 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.   DOI
33 Gholami, M., Zare, E., Azandariani, M.G. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.   DOI
34 Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.   DOI
35 Kim, J. (2019), "Development of seismic retrofit devices for building structures", Int. J. High-Rise Build., 8(3), 221-227. https://doi.org/10.21022/IJHRB.2019.8.3.221.   DOI
36 Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Tran. Evol. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017.   DOI
37 Puthanpurayil, A.M., Lavan, O. and Dhakal, R.P. (2020), "Multi-objective loss-based optimization of viscous dampers for seismic retrofitting of irregular structures", Soil Dyn. Earthq. Eng., 129, 105765. https://doi.org/10.1016/j.soildyn.2019.105765.   DOI
38 Takewaki, I. (1997), "Optimal damper placement for minimum transfer functions", Earthq. Eng. Struct. Dyn., 26, 1113-24. https://doi.org/10.1002/(SICI)1096-9845(199711)26:11<1113::AID-EQE696>3.0.CO;2-X.   DOI
39 Zhu, M., McKenna, F. and Scott, M. H. (2018), "OpenSeesPy: Python library for the OpenSees finite element framework", SoftwareX, 7, 6-11. https://doi.org/10.1016/j.softx.2017.10.009.   DOI