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1. Introduction 

 

 A hybrid rocket engine (HRE) [1] is expected to 

be an efficient propulsion system for future space 

transport. It has been successfully put to practical 

use for SpaceShipOne [2], which completed the first 

private manned spaceflight. In Japan, the hybrid 

rocket research working group (HRErWG) has been 

part of the Japan Aerospace Exploration Agency 

(JAXA), and several studies [3][4][5][6] have been 

conducted on the HRE. 

The HRE has a remarkably different combustion 

mechanism from a conventional liquid or solid rocket. 

The oxidizer-to-fuel ratio (O/F) for a conventional 

rocket can be determined before ignition, but the 

mixture of fuel and oxidizer in an HRE is determined 

after ignition. Because the O/F is determined at this 

point in the combustion process, the solid fuel 

geometry and supply control of the oxidizer have to 

be optimally combined to design an efficient HRE.  

In an HRE, which supplies solid fuel to gas oxidized 

via a single port, the O/F is affected by aspects of 

the solid fuel design, such as the port diameter, fuel 

length, and mass flow of the oxidizer. In addition, the 

combustion process depends on the mission 

requirements. That is, the design results may be 

different for different missions. As a result, the use 

of multi-disciplinary optimization (MDO) is desirable 

in the design of HREs, which requires consideration 

of the rocket weight, the thrust, and the flight 

altitude. In authors previous study [5][6], an MDO 

methodology that includes a technique for evaluation 

of an HRE has been developed. Using this 

methodology, a global design for an HRE-powered 
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launch vehicle (LV) that launches vertically was 

investigated using a multi-objective genetic 

algorithm (MOGA). In this work, 1-degree-of-

freedom (1DoF) equation of motion was solved to 

evaluate the flight altitude.  

However, an LV flies not only vertically but also 

horizontally. Thus, the flight estimation should be 

enhanced from a one-dimensional analysis to a 

three-dimensional analysis. In this study, a flight 

simulation-enhanced evaluation was developed for 

purposes of design optimization using an arbitral 

optimizer, such as an evolutionary algorithm or a 

gradient-based method. In the flight evaluation, the 

flight-path angle and attitude angle were calculated 

separately, and the rotation of the LV was estimated. 

The thrust angle was assumed to be equal to the 

attitude angle.  

After the enhancement of the evaluation method, 

two design problems for a single-stage LV with an 

HRE were solved using the non-dominated sorting 

genetic algorithm-II (NSGA-II), and the behavior of 

objective functions, such as those for the altitude, 

downrange distance, and total weight, was 

investigated. The objective functions were 

maximization of the downrange distance over the 

target altitude and minimization of the gross weight. 

For this problems, optimizations were carried out 

under the constraint that the LV should reach 

altitudes of 50.0 km and 100.0 km. 

 

2. Procedure of Performance Evaluation 

for LV Using HRE  

 

This study addressed the conceptual design of the 

LV of a single-stage HRE rocket, which has a thrust 

chamber, an oxidizer tank, a nozzle, and a payload 

(Fig. 1). The combustion chamber has solid fuel, with 

a single port to supply the oxidizer. The performance 

of an HRE can be estimated by the regression rate, 

which depends on the mass flux. Figure 2 shows the 

overview of the evaluation procedure [5][6]. In 

general, the regression rate of the fuel in the radial 

direction 𝑟̇𝑝𝑜𝑟𝑡(𝑡) governs the thrust and determines 

the performance of the LV. This regression rate 

𝑟̇port(𝑡) is expressed as a function of the mass flux of 

the oxidizer through the fuel port 𝐺oxi(𝑡) as follows.  

 

𝑟̇port(𝑡) = 𝑎𝐺oxi
𝑛 (𝑡)                                                (1) 

 

The coefficient 𝑎  and index 𝑛  are evaluated by 

testing with several propellants, and Eq. 1 is 

empirically defined. Using Eq. 1, 𝑟̇port(𝑡) can be used 

to estimate the oxidizer-to-fuel ratio at time t. After 

the thrust is estimated, the following 3-degree-of-

freedom (3DoF) equation of motion is calculated to 

simulate the flight of the LV. 

 

{
 
 

 
 
𝑑2𝑥

𝑑𝑡2
= (𝑇 − 𝐷)cos𝜃

𝑑2𝑦

𝑑𝑡2
= (𝑇 − 𝐷)sin𝜃 − 𝑔

𝑑2𝜃

𝑑𝑡2
= ∑ (5

𝑖=1 𝐿𝑖/𝐼𝑖)

                                         (2) 

 

where 𝑁(𝑡)  is the normal component of the 

aerodynamic force. 

 

 
Fig. 1 Conceptual illustration of the HRE 

 

 
Fig. 2 Conceptual illustration of the HRE 

 

3. Optimization Method 

 

3.1. Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) 
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Genetic algorithms are popular heuristic 

optimization techniques that use operators such as 

selection, crossover, and mutation. The non-

dominated sorting genetic algorithm-II (NSGA-II) 

[8][9] is employed in this study. NSGA-II is 

characterized by non-dominated sorting and 

crowding distance sorting. Based on these sorting 

combining elitism, the new generation is filled until 

the population size exceeds the current population 

size. 

3.2. Parallel Coordinate Plot (PCP) 

A parallel coordinate plot (PCP) is a statistical 

visualization technique used to convert high-

dimensional data into two-dimensional graphs. [6] 

To generate a PCP, the attribute values in the design 

problem, such as the design variables, objective 

functions, and constraint values, have to be 

normalized for comparison along the same axis. After 

normalization, the axes are arranged in consistent 

parallel lines. In general, the distances between each 

line and the next are equivalent. Using a PCP, it is 

easy to inspect the design problem at a glance. 

 

4. Formulations 

 

3.1. Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) 

Two objective functions are considered: 

maximization of the downrange distance of the LV, 

𝐷𝑅max , and minimization of 𝑀tot . In addition, 𝐴𝑙𝑡max 

must be greater than 𝐴𝑙𝑡target. The geometric aspect 

ratio of the vehicle 𝐿/𝐷 is limited to 25.0, and the LV 

is to deliver a 40-kg payload, as in Problem1. The 

design problem can be expressed as follows:  

 

{

Minimize   𝐷𝑅max
Minimize   𝑀tot
   Subjectto   𝐿/𝐷 ≤ 25.0
   Subjectto   𝐴𝑙𝑡max ≥ 𝐴𝑙𝑡target

                             (3) 

 

In this study, 𝐴𝑙𝑡target was set to 50.0 km for the desi

gn problem referred to as Problem1 and 100.0 km fo

r the design problem referred to as Problem2. 

 

5. Results 

 

5.1. Exploration Results by Means of NSGA-II 

Figure 3 shows a comparison of the non-dominated 

solutions for Problem1 and Problem2. According to 

Figure 3(a), the maximum 𝐷𝑅max  is approximately 

180.0km for an altitude of 50 km. The results for 

Problem1 suggest that an LV that flies less than 

160.0km downrange is an economical design for a 

50.0km altitude. According to Figure 3(b), the 

maximum 𝐷𝑅max  is approximately 180 km for an 

altitude of 100 km, as in Problem2. The non-

dominated solution has an inflection point at 

approximately 𝐷𝑅max = 170.0 km and 𝑀tot = 900.0 kg. 

As a result, 𝑀tot  increases rapidly if the designer 

wants to obtain a design that yields a value of more 

than 170.0 km for 𝐷𝑅max. Thus, these results suggest 

that an LV that flies less than 170.0 km downrange is 

an economical design for a 100.0km altitude. 

5.2. Exploration Results by Means of NSGA-II 

Figures 4 (a)-(b) show the design examples 

obtained by solving Problem1 and Problem2. Each 

example is a compromise solution selected in the 

vicinity of the inflection point of the non-dominated 

solution, as shown in Fig. 3.  

Figure 4 (a) shows Des1, which can achieve 

𝐻max = 110.0km. The rocket diameter of Des1 is 0.34 

m, which is similar to the size of the JAXA’s solid 

fuel LV, S-210, which can fly at an altitude of 

approximately 100.0 km with a 40-kg payload. A 

comparison of Figs. 2, which were obtained by 

solving Problem2, shows that the 𝐿/𝐷  becomes 

larger when the constraint 𝐻target  is set higher. A 

narrower LV can reach higher altitudes because the 

aerodynamic drag is reduced. 

 
(a) 
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(b) 

Fig. 3 Non-

dominated solutions obtained by MOGA.(a)Problem1 an

d (b)Problem2 

 
(a) 

 
(b) 

Fig. 4

Design examples from four cases.(a)Des1 and (d)Des2 

 

4. Conclusions 

 

In this study, a multi-disciplinary evaluation method 

for an LV with an HRE was developed, and multi-

objective design was carried out by means of NSGA-

II. 3-degree-of-freedom equations of motion were 

solved to determine the downrange distance of the 

LV, taking into consideration the displacement of the 

center of gravity due to fuel burn. The evaluation 

process developed in this study was used to consider 

two design problems.  

According to the MOGA results, each problem 

demonstrates the trade-off between the objective 

functions with respect to the inflection point. The 

inflection points also indicate the upper limit of 

economical LV design. Drawing the compromised 

solution from the non-dominated solution, the LV’s 

aspect ratio becomes larger when the target altitude 

is set higher in the case of maximization of the down 

range distance. 
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