• Title/Summary/Keyword: single nucleotide polymorphism(SNP)

Search Result 569, Processing Time 0.034 seconds

Evaluation of Genetic Diversity among Soybean Genotypes Using SSR and SNP

  • Lee, Suk-Ha;P. Tanya;O, Srinives;T. Toojinda;A. Vanavichit;Ha, Bo-Keun;Bae, Jeong-Suk;Moon, Jung-Kyung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.334-340
    • /
    • 2001
  • Two different types of molecular markers, simple sequence repeat (SSR) and single nucleotide polymorphism (SNP), were used to measure genetic diversity among five Korean, eight Thai, and three wild soybeans. For SSR analysis, a total of 20 markers were surveyed to detect polymorphisms. For SNP analysis, four primers were designed from consensus sequence regions on disease resistance protein homolog genes, and used to amplify the genomic region. The PCR products were sequenced. A number of polymorphic SSR and SNP bands were scored on all genotypes and their genetic similarity was measured. Clustering analysis was performed independently on both types of markers. Clustering based on SSR markers separated the genotypes into three main groups originated from Korea, Thailand, and wild soybeans. On the other hand, two main groups were classified using SNP analysis. It seemed that SSR was more informative than SNP in this study. This may be due to the fact that SNP was surveyed on the smaller genomic region than SSR. Grouping based on the combined data of both markers revealed similar results to that of SNP rather than that of SSR. This might be due to the fact that more loci from SNP were considered to measure genetic relatedness than those from the SSR.

  • PDF

Development of a Single-nucleotide Polymorphism Marker for the Sw-5b Gene Conferring Disease Resistance to Tomato spotted wilt virus in Tomato

  • Lee, Hyung Jin;Kim, Boyoung;Bae, Chungyun;Kang, Won-Hee;Kang, Byoung-Cheorl;Yeam, Inhwa;Oh, Chang-Sik
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.730-736
    • /
    • 2015
  • Tomato spotted wilt virus (TSWV) causes one of the most destructive viral diseases that threatens global tomato production. Sw-5b was reported as the resistance gene effective against TSWV. The objective of this research was to develop a single-nucleotide polymorphism (SNP) marker to distinguish tomato cultivars resistant to TSWV from susceptible cultivars for marker-assisted breeding. First, we determined genotypes for TSWV resistance in 32 commercial tomato cultivars using the previously reported Sw-5b gene-based marker. Then, DNA sequences of Sw-5b alleles in tomato cultivars showing resistant or susceptible genotypes were analyzed; a single SNP was found to distinguish tomato cultivars resistant to TSWV from susceptible cultivars. Based on the confirmed SNP, a SNP primer pair was designed. Using this new SNP sequence and high-resolution melting analysis, the same 32 tomato cultivars were screened. The results were perfectly correlated with those from screening with the Sw-5b gene-based marker. These results indicate that the SNP maker developed in this study will be useful for better tracking of resistance to TSWV in tomato breeding.

Investigation of Single Nucleotide Polymorphisms in Porcine Candidate Genes for Economic Traits in the Commercial Pig Breed (돼지 품종의 경제형질 관련 후보유전자의 단일염기 다형성에 관한 연구)

  • Kim, Sang-Wook;Lee, Mi-Rang;Kang, Han-Seok;Kim, Seon-Ku;Shin, Teak-Soon;Lee, Hong-Gu;Jeon, Hae-Yeal;Kim, Kwan-Suk;Do, Chang-Hee;Choi, Bong-Hwan;Kim, Tae-Hun;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.770-775
    • /
    • 2008
  • Several studies reported quantitative trait loci (QTL) for meat quality on porcine chromosome 2. For application of the chromosomal information to pig industry through using DNA technology, single nucleotide polymorphism (SNP) markers are developed by comparative re-sequencing of polymerase chain reaction (PCR) products of 13 candidate genes. A total of 34 SNPs were identified in 11 PCR products, an average of one SNP in every 296 bp.PCR restriction fragment length polymorphism (RFLP) assays were developed for 11 SNPs and used to genotype four commercial pig populations in Korea. The SNP markers were used to map candidate genes in QTL and to clarify the relevance of SNP and quantitative traits.

Single Nucleotide Polymorphism of TBC1D1 Gene Association with Growth Traits and Serum Clinical-Chemical Traits in Chicken

  • Manjula, Prabuddha;Cho, Sunghuyn;Suh, Kook Jin;Seo, Dongwon;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.45 no.4
    • /
    • pp.291-298
    • /
    • 2018
  • TBC1D1 gene has known functional effects on body energy homeostasis and glucose uptake pathway in skeletal muscle tissue. This biological function is reported to have significant effects on traits of growth and meat quality in chicken. In this study, we focused on two single nucleotide polymorphisms (SNPs) (g.70179137A>G and g.70175861T>C) identified through SNP annotation information of Korean native chicken and previous literature for TBC1D1 in chicken. Association of SNPs in TBC1D1 with growth and serum clinical-chemical traits were evaluated. A total of 584 male and female birds from five Korean native chicken lines were used in the study. The SNP1 (g.70179137A>G) is located in intron 11 and SNP2 (g.70175861T>C) is a non-synonymous missense mutation in exon 10, responsible for the amino acid change from Methionine to Valine. The A allele of SNP1 and T allele of SNP2 had the highest allele frequencies. Both SNPs indicated moderate polymorphism information content values (0.25

Association of single-nucleotide polymorphisms in dual specificity phosphatase 8 and insulin-like growth factor 2 genes with inosine-5'-monophosphate, inosine, and hypoxanthine contents in chickens

  • Jean Pierre Munyaneza;Minjun Kim;Eunjin Cho;Aera Jang;Hyo Jun Choo;Jun Heon Lee
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1357-1366
    • /
    • 2023
  • Objective: This study aimed to identify the single-nucleotide polymorphisms (SNPs) in the dual-specificity phosphatase 8 (DUSP8) and insulin-like growth factor 2 (IGF2) genes and to explore their effects on inosine-5'-monophosphate (IMP), inosine, and hypoxanthine contents in Korean native chicken -red-brown line (KNC-R Line). Methods: A total sample of 284 (males, n = 127; females n = 157) and 230 (males, n = 106; females, n = 124) aged of 10 weeks old KNC-R line was used for genotyping of DUSP8 and IGF2 genes, respectively. One SNP (rs313443014 C>T) in DUSP8 gene and two SNPs (rs315806609A/G and rs313810945T/C) in IGF2 gene were used for genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and KASP methods, respectively. The Two-way analysis of variance of the R program was used to associate DUSP8 and IGF2 genotypes with nucleotide contents in KNC-R chickens. Results: The DUSP8 (rs313443014 C>T) was polymorphic in KNC-R line and showed three genotypes: CC, CT, and TT. The IGF2 gene (rs315806609A/G and rs313810945T/C) was also polymorphic and had three genotypes per SNP, including GG, AG, and AA for the SNP rs315806609A/G and genotypes: CC, CT, and TT for the SNP rs313810945T/C. Association resulted into a strong significant association (p<0.01) with IMP, inosine, and hypoxanthine. Moreover, the significant effect of sex (p<0.05) on nucleotide content was also observed. Conclusion: The SNPs in the DUSP8 and IGF2 genes might be used as genetic markers in the selection and production of chickens with highly flavored meat.

BcSNPdb: Bovine Coding Region Single Nucleotide Polymorphisms Located Proximal to Quantitative Trait Loci

  • Moon, Sun-Jin;Shin, Hyoung-Doo;Cheong, Hyun-Sub;Cho, Hye-Young;NamGoong, Sohg;Kim, Eun-Mi;Han, Chang-Su;Sung, Sam-Sun;Kim, Hee-Bal
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.95-99
    • /
    • 2007
  • Bovine coding region single nucleotide polymorphisms located proximal to quantitative trait loci were identified to facilitate bovine QTL fine mapping research. A total of 692,763 bovine SNPs was extracted from 39,432 UniGene clusters, and 53,446 candidate SNPs were found to be a depth >3. In order to validate the in silico SNPs experimentally, 186 animals representing 14 breeds and 100 mixed breeds were analyzed. Genotyping of 40 randomly selected candidate SNPs revealed that 43% of these SNPs ranged in frequency from 0.009 to 0.498. To identify non-synonymous SNPs and to correct for possible frameshift errors in the ESTs at the predicted SNP positions, we designed a program that determines coding regions by protein-sequence referencing, and identified 17,735 nsSNPs. The SNPs and bovine quantitative traits loci informations were integrated into a bovine SNP data: BcSNPdb (http://snugenome.snu.ac.kr/BtcSNP/). Currently there are 43 different kinds of quantitative traits available. Thus, these SNPs would serve as valuable resources for exploiting genomic variation that influence economically and agriculturally important traits in cows.

Development of a Single Nucleotide Polymorphism DNA Microarray for the Detection and Genotyping of the SARS Coronavirus

  • Guo, Xi;Geng, Peng;Wang, Quan;Cao, Boyang;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1445-1454
    • /
    • 2014
  • Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

Identification of Hanwoo and Holstein meat using MGB probe based real-time PCR associated with single nucleotide polymorphism (SNP) in Melanocortin 1 receptor (MC1R) gene (소 모색관련 MC1R 유전자의 SNP와 관련한 MGB probe에 기초한 real-time PCR을 이용한 한우육과 Holstein육의 판별)

  • Park, Sung-Do;Kim, Tae-Jung;Lee, Jae-Il
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.25-28
    • /
    • 2005
  • The melanocortin 1 receptor (MC1R) plays an important role in regulation of melanin pigment synthesis within mammalian melanocytes. Mutations within the gene encoding MC1R have been shown to explain coat color variations within several mammalian species including cattle. To develope a rapid and accurate method for the identification of Hanwoo meat, we performed a single nucleotide polymorphism (SNP) analysis in Melanocortin 1 receptor (MC1R) gene using TaqMan$^{(R)}$ MGB probe-based real-time PCR. Two specific probes (one for Hanwoo and the other for Holstein and Black angus) were designed. At the 5' end of 2 TaqMan$^{(R)}$ MGB probes, 6-carboxyfluorescein (FAM) was labeled for Hanwoo, and VIC for Holstein and Black angus. As a result, Hanwoo samples showed FAM-positive signal only, whereas other samples showed VIC-positive. This result suggests that the TaqMan$^{(R)}$ MGB probe based real-time PCR technique would be very accurate, easy and reproducible method to discriminate between Hanwoo meat and Holstein/Black angus meat.

A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods

  • Jong Hyun Jung;Sang Min Lee;Sang-Hyon Oh
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.807-816
    • /
    • 2024
  • Objective: This study aims to identify the significant regions and candidate genes of growth-related traits (adjusted backfat thickness [ABF], average daily gain [ADG], and days to 90 kg [DAYS90]) in Korean commercial GGP pig (Duroc, Landrace, and Yorkshire) populations. Methods: A genome-wide association study (GWAS) was performed using single-nucleotide polymorphism (SNP) markers for imputation to Illumina PorcineSNP60. The BayesB method was applied to calculate thresholds for the significance of SNP markers. The identified windows were considered significant if they explained ≥1% genetic variance. Results: A total of 28 window regions were related to genetic growth effects. Bayesian GWAS revealed 28 significant genetic regions including 52 informative SNPs associated with growth traits (ABF, ADG, DAYS90) in Duroc, Landrace, and Yorkshire pigs, with genetic variance ranging from 1.00% to 5.46%. Additionally, 14 candidate genes with previous functional validation were identified for these traits. Conclusion: The identified SNPs within these regions hold potential value for future marker-assisted or genomic selection in pig breeding programs. Consequently, they contribute to an improved understanding of genetic architecture and our ability to genetically enhance pigs. SNPs within the identified regions could prove valuable for future marker-assisted or genomic selection in pig breeding programs.

Tetra Primer ARMS PCR Optimization to Detect Single Nucleotide Polymorphisms of the CYP2E1 Gene

  • Suhda, Saihas;Paramita, Dewi Kartikawati;Fachiroh, Jajah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3065-3069
    • /
    • 2016
  • Single nucleotide polymorphism (SNP) detection has been used extensively for genetic association studies of diseases including cancer. For mass, yet accurate and more economic SNP detection we have optimized tetra primer amplification refractory mutation system polymerase chain reaction (ARMS PCR) to detect three SNPs in the cytochrome P450 2E1 (CYP2E1) gene locus; i.e. rs3813865, rs2070672 and rs3813867. The optimization system strategies used were (1) designing inner and outer primers; (2) determining of their optimum primer concentration ratios; and (3) determining of the optimum PCR annealing temperature. The tetra primer ARMS PCR result could be directly observed using agarose gel electrophoresis. The method succesfully determined three SNPs in CYP2E1 locus, the results being consistent with validation using DNA sequencing and restriction fragment length polymorphisms (RFLP).