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dual specificity phosphatase 8 and insulin-like growth factor 2 
genes with inosine-5′-monophosphate, inosine, and  
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Objective: This study aimed to identify the single-nucleotide polymorphisms (SNPs) in 
the dual-specificity phosphatase 8 (DUSP8) and insulin-like growth factor 2 (IGF2) genes 
and to explore their effects on inosine-5′-monophosphate (IMP), inosine, and hypoxanthine 
contents in Korean native chicken -red-brown line (KNC-R Line). 
Methods: A total sample of 284 (males, n = 127; females n = 157) and 230 (males, n = 106; 
females, n = 124) aged of 10 weeks old KNC-R line was used for genotyping of DUSP8 and 
IGF2 genes, respectively. One SNP (rs313443014 C>T) in DUSP8 gene and two SNPs 
(rs315806609A/G and rs313810945T/C) in IGF2 gene were used for genotyping by 
polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and 
KASP methods, respectively. The Two-way analysis of variance of the R program was used 
to associate DUSP8 and IGF2 genotypes with nucleotide contents in KNC-R chickens.  
Results: The DUSP8 (rs313443014 C>T) was polymorphic in KNC-R line and showed 
three genotypes: CC, CT, and TT. The IGF2 gene (rs315806609A/G and rs313810945T/C) 
was also polymorphic and had three genotypes per SNP, including GG, AG, and AA for 
the SNP rs315806609A/G and genotypes: CC, CT, and TT for the SNP rs313810945T/C. 
Association resulted into a strong significant association (p<0.01) with IMP, inosine, and 
hypoxanthine. Moreover, the significant effect of sex (p<0.05) on nucleotide content was 
also observed.  
Conclusion: The SNPs in the DUSP8 and IGF2 genes might be used as genetic markers in 
the selection and production of chickens with highly flavored meat.

Keywords: Dual-specificity Phosphatase 8 (DUSP8); Insulin-like Growth Factor 2 (IGF2); 
Kompetitive Allele-specific Polymerase Chain Reaction (KASP); Korean Native Chicken; 
Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) 

INTRODUCTION

Meat has long been consumed as food in various cultures [1-3]. Chicken meat has gained 
popularity globally due to its affordable price, low in fat, rich in protein, vitamins, and 
mineral contents [4-6]. Among various types of meat, poultry meat including chickens, is 
generally considered to be nutritious and healthier, and is preferred by meat consumers 
of all ages [5]. Indigenous livestock species, including chickens, are important genetic 
resources for the development of new breeds [7]. Korean native chickens (KNCs) are well 
adapted to the Korean climate [8] but they grow slowly, resulting in low productivity 
compared to broilers [9,10]. KNCs are subdivided into five lines based on the plumage 
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color: white (KNC-W), black (KNC-B), yellow-brown 
(KNC-Y), gray-brown (KNC-G), and red-brown (KNC-R) 
[11-14]. 
  To satisfy current meat preferences among consumers, 
which are based on quality, safety, and flavor, the National In-
stitute of Animal Science (NIAS) of South Korea has 
attempted to develop a new high-quality KNC breed. The 
KNC-R line was selected for its higher meat quality, body 
weight, and contents of flavor-related compounds such as 
inosine 5’-monophosphate (IMP) compared to other KNC 
lines [15]. IMP is the most abundant nucleotide in meat [16] 
and is a major contributor to the taste and flavor in meat 
[17,18]. Inosine and hypoxanthine are IMP degradation 
products that also influence meat palatability [17]. The com-
bination of IMP with glutamic acid or aspartic acid was 
reported to enhance the umami taste [17]. The nucleotide 
content of chicken meat is affected by the chicken breed, age, 
and sex, as well as the cooking method [11,14,16].
  Flavor is among the most important meat quality parame-
ters influencing consumer acceptability [6,19-23]. Numerous 
studies have shown that meat consumers prefer native chicken 
meat over broiler meat due to its higher content of taste-
active compounds [24]. For example, meat consumers in 
South Korea, Japan, and Thailand were found to prefer 
meat from native chicken lines due to their flavor and tex-
ture [15,22], higher contents of nucleotides such as IMP 
and amino acids, including glutamic acid [22,24,25], and 
higher contents of flavor-related compounds [24], respec-
tively. Thus, improving the content of taste-related compounds 
such as IMP in chicken meat through selection and breed-
ing programs can improve the meat flavor and consumer 
acceptance [26].
  The identification of candidate genes influencing meat 
quality traits such as flavor is a crucial step in the genetic 
improvement of the polygenic traits [27,28]. The involvement 
of genetic markers in the selection and breeding programs 
is an effective strategy because nucleotides have medium to 
high heritability [27-31]. For example, IMP was reported 
to have high heritability (0.51 to 0.69) in Taihe silkie chickens 
[26]. A genome-wide association study (GWAS) of meat 
quality traits in KNCs identified the dual-specificity phos-
phatase 8 (DUSP8) and insulin-like growth factor 2 (IGF2) 
as candidate genes influencing the nucleotide content in 
chickens [Unpublished manuscript]. To the best of our 
knowledge, this was the first study to explore the effects of 
DUSP8 and IGF2 genes on the content of IMP, inosine, as 
well as hypoxanthine in Korean native chickens.
  Dual-specificity phosphatases (DUSPs) dephosphorylate 
the residues of both phosphoserine/threonine and phos-
photyrosine on mitogen-activated protein kinases (MAPKs) 
[32-34]. MAPK signaling pathways are involved in cell pro-
liferation, metabolism, motility, cell survival, cell death, 

apoptosis, cellular stress responses, cell differentiation, and 
immune responses [32,35,36]. DUSPs are important mod-
ulators and controllers of MAPK deactivation through 
dephosphorylation [33], and they play key roles in immune 
activation, brain function, and cell growth signaling [37]. 
DUSP8 expression has been reported to be higher in the 
adult human brain than in heart and skeletal muscle [34,38]. 
The DUSP8 polymorphism rs2334499 was found to be related 
to hypothalamic insulin resistance in men [38], whereas 
DUSP8 has been described as a gatekeeper for systemic 
glucose tolerance and hypothalamic insulin sensitivity [39]. 
  IGF2 is a polypeptide hormone similar to insulin that 
performs many functions related to growth and the utilization 
of amino acids and glucose [39-42]. In humans, IGF2 im-
pairment can lead to various metabolic disorders, including 
diabetes and obesity [43]. Several single-nucleotide poly-
morphisms (SNPs) of IGF2 have been associated with growth 
and meat quality traits in livestock species, including the 
growth rate and lipid metabolism of chickens [41]. The SNP 
of IGF2 was found to be significantly associated with body 
and carcass weight in 17-week-old Beijing You chickens 
[41].  
  In chickens, DUSP8 and IGF2 have been mapped to chro-
mosome 5. The DUSP8 gene has six exons and five introns 
(ENSGALG00000006647), whereas the IGF2 gene has three 
exons and two introns (ENSGALG00000035282). Both 
DUSP8 and IGF2 are involved in glucose uptake; glucose 
provides energy in the form of ATP, which undergoes further 
degradation to produce IMP, followed by inosine and hypo-
xanthine [44,45]. We hypothesized that these genes could 
influence the nucleotide contents in chicken meat, thereby 
enhancing meat flavor; however, the effects of SNPs in DUSP8 
and IGF2 on the IMP, inosine, and hypoxanthine contents of 
KNCs remain unclear. Therefore, the objective of this study 
was to identify SNPs in DUSP8 and IGF2 genes and to ex-
plore their effects on the IMP, inosine, and hypoxanthine 
contents in KNC-R chickens.

MATERIALS AND METHODS

Ethical statement
The protocol of this study was approved by the Animal Ethics 
Committee of Chungnam National University (202209A-
CNU-141).

Chicken samples and phenotype measurements
KNC-R chickens were obtained from the NIAS at the poultry 
research institute in Pyeongchang, South Korea, and main-
tained under consistent management and feeding conditions. 
Water was provided ad libitum. Genomic DNA was extracted 
from 284 chickens (127 males, 157 females) to examine 
SNPs in the DUSP8 gene and from 230 chickens (106 males, 
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124 females) to examine SNPs in the IGF2 gene. All chick-
ens were slaughtered at 10 weeks of age, and were not fed for 
12 hours but had access to water before slaughter, and were 
killed by conventional neck cut followed by bleeding, feather 
removing, and eviscerating in accordance with ethical guide-
lines. Breast meats were obtained from each carcass. Finally, 
a 100-g sample was collected from the breast of each chicken 
for nucleotide analysis. 

DNA extraction
Blood samples were collected from KNC-R chickens by the 
NIAS, transported to animal molecular genetics laboratory 
at Chungnam National University, and stored at –80°C until 
DNA extraction. A PrimePrep Genomic DNA Extraction 
Kit (GenetBio, Daejeon, Korea) was used to extract genomic 
DNA. The quality of genomic DNA was checked using spec-
trophotometry (NanoDrop 2000; Thermo Fisher Scientific, 
Waltham, MA, USA). DNA stocks were diluted with deionized 
distilled water to produce a working concentration of 25 ng/μL 
and stored at –20°C.

Primer design and polymerase chain reaction 
amplification of DUSP8 and IGF2 genes
To identify SNPs, a pair of primers was designed to amplify 
the fragment (406 bp) of the chicken DUSP8 gene contain-
ing the synonymous SNP of interest (rs313443014, C>T), 

and three pairs of primers were used to amplify all three ex-
ons of the IGF2 gene. The primers used in this study were 
designed using the primer-BLAST tool (https://www.ncbi.
nlm.nih.gov/tools/primer-blast) and synthesized by Bioneer 
Corp. (Daejeon, Korea). All primers used in this study are 
listed in Table 1. 
  Polymerase chain reaction (PCR) was performed in a 20-
μL volume containing 2 μL of genomic DNA (25 ng/μL of 
chicken DNA), 1 μL each of the forward and reverse primers, 
10 μL of HS Prime Taq Premix (2×) (GenetBio, Korea), and 
6 μL of deionized distilled water. The conditions were: initial 
denaturation at 95°C for 3 min followed by 35 cycles of de-
naturation at 95°C for 30 s, annealing at 63°C for 45 s (for 
DUSP8 gene), and extension at 72°C for 60 s; with a final ex-
tension at 72°C for 10 min (Table 1). Amplification was 
performed using a T100 Thermal Cycler (Bio-Rad, Hercules, 
CA, USA). A 2% agarose gel was used to visualize the prod-
ucts, and electrophoresis was run at 120 V for 30 min. The 
gels were visualized using an ultraviolet (UV) transilluminator.

DNA purification, quality control, and sequencing for 
IGF2 gene
We performed Sanger sequencing to identify SNPs in IGF2 
gene. The PCR products were purified using a PrimePrep 
PCR Purification Kit (GenetBio, Korea) and DNA quality 
and concentration were assessed via spectrophotometry 

Table 1. Primer information, SNP, PCR product (bp), annealing temperature, and genotyping method for DUSP8 and IGF2 genes

Gene SNP/location Primer F/R Amplicon  
(bp)

Annealing 
temperature (°C)

Genotyping 
method

DUSP8 Exon 1 (rs313443014C > T) F: 5′-GTTGTCCTGCCACCTGACTG-3′ 406 63 RFLP
R: 5′- GAGACCTTGTCCTGCTGGAG -3′

IGF2 Exon 1 F: 5′-CGCTGATACTCCCATGGACC-3′ 1,061 65
R: 5′- CCCTCAGAAGGCATCAGACC-3′

Exon 2 F: 5′- CTGTGGTCACTGCAGGAGAG-3′ 929 62
R: 5′-TGCTCGCCCATTTTACAGGT-3′

Exon 3 F: 5′-TGTCAGTAACCCACCTTGTGT-3′ 990 62
R: 5′-TCAGCGATGGTTTCAAAAAGG-3′

Intron 1 (rs315806609A/G) Forward primer X, Y (5’-3’) - 55 KASP
GAAGTTTGTTTTCTGCAATTTCTTTGACTT/ 
AAGTTTGTTTTCTGCAATTTCTTTGACTC
Common primer
CAGCATGCAGAGCCTTGAAGTGTTT
Fluorescent color
A/G (FAM/HEX)

Exon 2 (rs313810945T/C) Forward primer X, Y (5’-3’) - 55 KASP
AGAGCTTCCAGAAGCCATCTCAT/
 GAGCTTCCAGAAGCCATCTCAC
Common primer
GCCACACGTTGTACTTGGAGTACTT
Fluorescent color
T/C (FAM/HEX)

SNP, single-nucleotide polymorphism; PCR, polymerase chain reaction; DUSP8, dual-specificity phosphatase 8; IGF2, insulin-like growth factor 2; F/R, for-
ward and reverse primers; bp, base pairs; RFLP, restriction fragment length polymorphism; KASP, kompetitive allele specific PCR.

https://www.ncbi.nlm.nih.gov/tools/primer-blast
https://www.ncbi.nlm.nih.gov/tools/primer-blast
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(NanoDrop 2000; Thermo Fisher Scientific, USA). Sequenc-
ing was performed by Bioneer Corp. (Korea). In IGF2 gene, 
one SNP was discovered in intron 1 (rs315806609, A/G) and 
a synonymous SNP was discovered in exon 3 (rs313810945, 
T/C) (Supplementary Figure S1); both SNPs were used for 
genotyping.

Next-generation sequencing data analysis 
The next-generation sequencing (NGS) data for the KNCs 
was provided by the National Agricultural Biotechnology 
Information Center (NABIC), Jeonju, Korea to identify 
SNPs in the DUSP8 gene of the KNC-R line. We found six 
SNPs, including, one missense mutation (rs736096076, G>A) 
and five synonymous SNPs (rs313158156, C>T; rs313443014, 
C>T; rs314568020, G>A; rs315155184, G>A; and rs734913846, 
C>T). The synonymous SNP (rs313443014, C>T) of DUSP8 
was selected for amplification and genotyping. This SNP 
(rs313443014, C>T) of DUSP8 gene is found in the coding 
sequence (exon 1) leading to the alanine (A), an amino acid 
used as energy source and is converted into glucose by the 
liver during the intensive exercise[46].

Genotyping of DUSP8 and IGF2 genes
The PCR restriction fragment length polymorphism (PCR-
RFLP) and Kompetitive allele-specific PCR (KASP) methods 
were used to genotype the DUSP8 and IGF2 genes, respec-
tively. For DUSP8, the restriction enzyme MspI was selected 
using NEBcutter2 software (https://nc2.neb.com/NEBcutter2/) 
to digest the amplicon (406 bp). The volume of the diges-
tion mixture was 20 μL, containing 15 μL of PCR product, 
0.4 μL of restriction enzyme (MspI), 2 μL of 10× CutSmart 
buffer, and 2.6 μL of deionized distilled water. The mixture 
was incubated at 37°C, for 12 h. Visualization of the DUSP8 
genotypes was performed using a UV transilluminator fol-
lowing 3% agarose gel electrophoresis at 120 V for 30 min. 
For IGF2 genotyping, SNP target-specific primers were 
prepared for the KASP genotyping assay (Table 1). The 
KASP assay mix and KASP master mix (Table 1) were vali-
dated and produced by SeouLin Bioscience (Seongnam, 
Korea) and LGC Genomics Ltd. (Teddington, UK), respec-
tively. 

IMP, inosine, and hypoxanthine analyses using nuclear 
magnetic resonance 
IMP, inosine, and hypoxanthine contents were analyzed using 
nuclear magnetic resonance (NMR) as described previously 
[47]. Briefly, the steps of the analysis were chicken sample 
preparation, polar metabolite extraction, reconstitution of 
the meat extracts, and NMR data acquisition. The results are 
expressed as mg/100 g of breast meat. These results were 
used for an association analysis between DUSP8 and IGF2 
genotypes and nucleotide contents.

Genotype, allele frequencies, and Hardy-Weinberg 
equilibrium analyses
Genotype and allele frequencies of the DUSP8 and IGF2 genes 
were calculated after genotyping. The genotype frequency 
was calculated as follows [48]:
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where O and E are the total numbers of observed and ex-
pected genotypes, respectively, and N is the total number of 
samples.

Statistical analyses
We used R v4.2.1 software [50] to perform all statistical analy-
ses. Analysis of variance (ANOVA) was performed to assess 
the effects of the DUSP8 and IGF2 genotypes on the nucleo-
tide contents of the KNC-R line. The homogeneity of variance 
assumption of the ANOVA was tested using Levene’s test, 
and the normality assumption was tested using the Shapiro-
Wilk test. The association between the DUSP8 and IGF2 
genotypes and nucleotide contents was analyzed by a two-
way ANOVA for the IMP and hypoxanthine contents and 
Welch’s one-way ANOVA was used to assess the effects of 
genotypes and sex on inosine content because the variances 
were not equal. The following is a 2-way ANOVA model: 
Yi,j,k = µ+αi+βj+(αβ)i,j+εi,j,k

  Where Yi,j,k is the observation on nucleotide content, µ is 
the population mean for nucleotide content, αi is the geno-
type effect, βj is the sex effect, (αβ)i,j is the interaction effect 
between genotype and sex, and εi,j,k is the residual error.
  Tukey’s honest significant difference (HSD) test was used 
to compare mean values among the genotypes and the p-
values (p<0.05) were considered to be statistically significant.

https://nc2.neb.com/NEBcutter2/
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RESULTS

IGF2 sequencing analysis
To identify SNPs in IGF2 gene, the Sanger sequencing results 
were analyzed using Bioedit [51]. Sequence analyses of dif-
ferent alleles of the KNC IGF2 gene were based on a reference 
sequence from the Ensembl database (https://asia.ensembl.
org/; accession no. ENSGALG00000035282). Two SNPs 
were identified, including one intron variant and one synony-
mous mutation (Supplementary Figure S1).

Polymorphism analyses of DUSP8 and IGF2 genes
Genotyping of the DUSP8 gene was performed using the 
RFLP method. SNP (rs313443014, C>T) in DUSP8 was locat-
ed in exon 1 of chicken chromosome 5. The 406 bp fragment 
(rs313443014, C>T) of the DUSP8 gene was successfully 
amplified and its PCR product was digested using MspI, 
resulting in three genotypes: CC (two fragments of 189 and 
217 bp), CT (three fragments of 189, 217, and 406 bp), and 
TT (an uncut fragment of 406 bp) (Figure 1A-C). These 

results were visualized by 3% agarose gel electrophoresis. 
IGF2 was genotyped using the KASP method. KASP geno-
typing for SNPs in intron 1 (rs315806609, A/G) produced 
three genotypes: AA, AG, and GG. For the synonymous 
SNP (rs313810945, T/C), KASP genotyping produced three 
genotypes: TT, CT, and CC (Figure 1A-C).

Genotype and allele frequencies of SNPs in DUSP8 and 
IGF2 genes
For DUSP8 gene, the C allele was the most frequent in the 
KNC-R line (66%) followed by the T allele (34%) in the total 
samples. The CT heterozygous genotype was the most frequent 
(58%), followed by the CC (37%) and TT (5%) genotypes 
for the total samples (Table 2). The synonymous SNP 
(rs313443014, C>T) of DUSP8 deviated from HWE (Table 
2) for the population A and also in the total sample. For 
IGF2, in the intron 1 SNP (rs315806609, A/G), the G allele 
had the highest frequency (72%) among all samples; in the 
synonymous SNP (rs313810945, T/C), the C allele was the 
most frequent (75%). In SNP rs315806609 (A/G), the homo-

Figure 1. RFLP genotyping results of DUSP8 gene (SNP rs313443014C>T) visualized on 3% agarose gel electrophoresis from samples 1 to 8 (A); 
KASP genotyping results for SNP in intron 1(rs315806609A/G) (B); and synonymous SNP (rs313810945T/C) (C) of IGF2 gene in Korean native 
chicken-red-brown line (KNC-R line). RFLP, restriction fragment length polymorphism; DUSP8, dual-specificity phosphatase 8; KASP, Kompetitive 
allele-specific polymerase chain reaction; SNP, single-nucleotide polymorphism; NEG, negative control; M, DNA marker with 100 bp.

https://asia.ensembl.org/
https://asia.ensembl.org/


1362  www.animbiosci.org

Munyaneza et al (2023) Anim Biosci 36:1357-1366

zygous GG genotype was the most frequent (50%), followed 
by the AG heterozygous (43%) and the AA homozygous 
(7%) genotypes. In SNP rs313810945 (T/C), the CC geno-
type had the highest frequency (57%), followed by CT (36%) 
and TT (6% (Table 2). The χ2 tests showed that both SNPs 
of the IGF2 gene (rs315806609, A/G and rs313810945, T/C) 
in the KNC-R line were in HWE (p<0.05; Table 2).

Association of SNPs in DUSP8 and IGF2 genotypes 
with nucleotide contents
We detected a highly significant association (p<0.01) between 
IMP, inosine, and hypoxanthine contents and SNP rs313443014 
(C>T) in exon 1 of the DUSP8 gene and the intron 1 and 

exon 3 SNPs (rs315806609, A/G and rs313810945, T/C) of 
the IGF2 gene in the KNC-R line (Table 3). 

Sex effects on nucleotide contents
We detected a significant association (p<0.05) between sex 
and the IMP and hypoxanthine contents in the KNC-R line. 
Females had a higher IMP content than males, whereas males 
had a higher hypoxanthine content than females (Table 4).

DISCUSSION

In this study, we investigated the breeding potential of KNC-R 
chickens, which have a higher IMP content than other KNC 

Table 3. Association of DUSP8 and IGF2 genotypes with IMP, inosine, and hypoxanthine contents in the KNC-R line

Gene SNP Trait Genotype, 

20 
 
Table 3. Association of DUSP8 and IGF2 genotypes with IMP, inosine, and hypoxanthine contents 512 
in the KNC-R line 513 

Gene SNP Trait          Genotype, 𝑥̅𝑥 ±SD 
DUSP8   CC (n = 106)                  CT (n = 163)                                   TT (n = 15) 

rs313443014 C>T 
Inosine 39.12±9.25a 34.06±10.91b 37.33±9.48ab 

Hypoxanthine 6.35 ± 2.08a 4.83± 2.15b 6.00 ±2.25ab 
IMP 176.78 ± 23.30b 190.89 ±25.22a 177.61 ±13.91b 

IGF2   GG (n = 116) AG (n = 98) AA (n = 16) 

rs315806609A/G 
Inosine 41.03±9.61a 33.42±8.70b 32.60±8.80b 

Hypoxanthine 6.03 ± 2.34a 5.61± 2.26b 5.27±1.93b 
IMP 178.46±23.95b 187.00±24.87a 182.05 ±23.05ab 

rs313810945T/C 

 CC (n = 130) CT (n = 85) TT (n = 15) 
Inosine 39.78±9.99a 33.38±9.00b 32.48±9.10b 

Hypoxanthine 6.30 ± 2.26 5.36± 2.16 5.21±1.88 
IMP 174.71±21.40b 188.31±24.12a 183.32±20.16ab 

Nucleotide contents were expressed as mg/100 g. 514 
Individuals with specific genotypes are shown in parentheses.  515 
DUSP8, dual-specificity phosphatase 8; IGF2, insulin-like growth factor 2; IMP, inosine-5′-516 
monophosphate; KNC-R, Korean native chicken -red-brown line; SNP, single-nucleotide polymorphism; 517 
SD, standard deviation. 518 
a,b Means in the same row with different superscripts are strongly different (p<0.01).  519 
 520 
  521 

±SD

CC (n =  106) CT (n =  163) TT (n =  15)
DUSP8 rs313443014 C > T Inosine 39.12 ± 9.25a 34.06 ± 10.91b 37.33 ± 9.48ab

Hypoxanthine 6.35 ± 2.08a 4.83 ± 2.15b 6.00 ± 2.25ab

IMP 176.78 ± 23.30b 190.89 ± 25.22a 177.61 ± 13.91b

GG (n =  116) AG (n =  98) AA (n =  16)
IGF2 rs315806609A/G Inosine 41.03 ± 9.61a 33.42 ± 8.70b 32.60 ± 8.80b

Hypoxanthine 6.03 ± 2.34a 5.61 ± 2.26b 5.27 ± 1.93b

IMP 178.46 ± 23.95b 187.00 ± 24.87a 182.05 ± 23.05ab

rs313810945T/C CC (n =  130) CT (n =  85) TT (n =  15)
Inosine 39.78 ± 9.99a 33.38 ± 9.00b 32.48 ± 9.10b

Hypoxanthine 6.30 ± 2.26 5.36 ± 2.16 5.21 ± 1.88
IMP 174.71 ± 21.40b 188.31 ± 24.12a 183.32 ± 20.16ab

Nucleotide contents were expressed as mg/100 g.
Individuals with specific genotypes are shown in parentheses. 
DUSP8, dual-specificity phosphatase 8; IGF2, insulin-like growth factor 2; IMP, inosine-5′-monophosphate; KNC-R, Korean native chicken -red-brown line; 
SNP, single-nucleotide polymorphism; SD, standard deviation.
a,b Means in the same row with different superscripts are strongly different (p < 0.01). 

Table 2. Genotype frequency, allele frequency, and chi-square test results in the DUSP8 and IGF2 genes of the KNC-R line

Gene SNP Population N Genotype frequency Allele frequency χ2 calc.

DUSP8 rs313443014  
C > T

A 79 CC (8) 
0.10

CT (70) 
0.89

TT (1) 
0.01

C  
0.54

T  
0.46

49.48

B 205 CC (98) 
0.48

CT (93)  
0.45

TT (14)  
0.07

C  
0.70

T  
0.30

1.5

Total 284 CC (106) 
0.37

CT (163)  
0.58

TT (15)  
0.05

C  
0.66

T  
0.34

22.14

IGF2 rs315806609 
A/G

A 25 GG (7) 
0.28

AG (16)  
0.64

AA (2)  
0.08

G  
0.60

A  
0.40

2.78

B 205 GG (109) 
0.53

AG (82)  
0.40

AA (14)  
0.07

G  
0.73

A  
0.27

0.08

Total 230 GG (116) 
0.50

AG (98)  
0.43

AA (16)  
0.07

0.72 0.28 0.46

rs313810945  
T/C

A 25 CC (8)  
0.32

CT (14)  
0.56

TT (3)  
0.12

C  
0.68

T  
0.32

0.16

B 205 CC (122)  
0.60

CT (71)  
0.34

TT (12)  
0.06

C  
0.77

T  
0.23

0.15

Total 230 CC (130) 
0.57

CT (85)  
0.36

TT (15)  
0.06

G  
0.75

A  
0.25

0.69

DUSP8, dual-specificity phosphatase 8; IGF2, insulin-like growth factor 2; KNC-R, Korean native chicken -red-brown line; SNP, single-nucleotide polymor-
phism; χ2 calc.: chi-square calculated; χ2 table (p < 0.05) =  3.84. 
Individuals with specific genotypes are shown in parentheses.
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lines [15]. The DUSP8 and IGF2 genes were previously in-
vestigated through a GWAS as candidate genes for altering 
nucleotide contents. Both DUSP8 and IGF2 are polymorphic 
genes in the KNC-R line. DUSP8 has been described as a 
gatekeeper for glucose disposal to cells [38]; this glucose is 
broken down to produce ATP, followed by IMP [17,35,45]. 
Like insulin, IGF2 performs various functions such as glu-
cose usage leading to IMP production [39-42]. IMP is the 
most abundant nucleotide in meat, and its content has been 
reported to influence meat flavor [15,52]. Inosine and hypo-
xanthine were also reported to influence meat aroma [16,17]. 
  Genotyping of the DUSP8 gene resulted in three geno-
types (CC, CT, and TT). Our results show that SNP of the 
DUSP8 gene (rs313443014, C>T) in the KNC-R line deviat-
ed from HWE for the population A and this influenced the 
total sample. This deviation from HWE might be attributed 
to the selection, which lead to the formation of the five lines 
of KNCs [53]. Large populations can deviate from HWE as 
a result of selection, mutation, gene flow, and/or genetic drift 
[28,54,55]. Our results show that chickens with the CC ho-
mozygous genotype had higher inosine and hypoxanthine 
contents than those with the CT genotype, whereas chickens 
with the CT heterozygous genotype had a higher IMP con-
tent than those with the CC and TT genotypes. Thus, DUSP8 
has a significant effect on the nucleotide contents in chickens 
of the KNC-R line.
  The χ2 tests showed that both SNPs (rs315806609, A/G 
and rs313810945, T/C) of the IGF2 gene were in HWE 
(p<0.05) in the analyzed population. This may be attributed 
to the absence of evolutionary pressures such as mutation, 
selection, genetic drift, and gene flow in the population 
under consideration [28,54,55]. The IGF2 genotypes were 
significantly associated with IMP, inosine, and hypoxanthine 

contents. For SNP rs315806609 (A/G), the GG homozygote 
genotype was significantly associated with higher inosine 
and hypoxanthine contents than the AG and AA genotypes. 
By contrast, the AG heterozygous genotype was significantly 
associated with a higher IMP content. For SNP rs313810945 
(T/C), the CC homozygous genotype was significantly as-
sociated with a higher inosine content and a lower IMP 
content. For the latter SNP, there was no significant differ-
ence in hypoxanthine content among the three genotypes 
in 10-week-old chickens; however, the CT heterozygous 
genotype was significantly associated with a higher IMP 
content than both homozygous genotypes (Table 3). 
  Our study also detected effects of sex on nucleotide con-
tents. Female chickens had a higher IMP content than male 
chickens, whereas males had a higher hypoxanthine content. 
These results are consistent with those of a previous study 
that reported a higher IMP content in females than in males 
[11]. However, there was no significant effect of sex on inosine 
content (Table 4). IMP content has been reported to be in-
fluenced by chicken breed, age, and sex, as well as cooking 
method [11,14,16]. KNCs contain higher amounts of IMP 
than broilers and Hinai-jidori (native to Japan), Wenchang 
and Xianju (native to China), and Lingnanhuang (Chinese 
commercial broiler line) chickens [18]. Nucleotides affect 
meat flavor [16,17], which governs meat consumer prefer-
ences [18]. Increasing the IMP content in chickens may 
improve meat flavor and consumer acceptance. Therefore, 
the discovery of three genotypes among the DUSP8 and 
IGF2 genes that are associated with nucleotide content varia-
tion in chickens is highly beneficial as these genotypes may 
be used in selection and breeding programs to improve 
chicken meat flavor. In future research, the results of this 
study should be validated using larger sample sizes and dif-
ferent KNC lines, as well as in different chicken breeds. 

CONCLUSION

In this study, we identified SNPs among the DUSP8 and 
IGF2 genes of the KNC-R line that influence chicken meat 
nucleotide contents. The heterozygous (CT) genotype of a 
synonymous SNP (rs313443014, C>T) of the DUSP8 gene 
had a higher IMP content, whereas the homozygous genotype 
(CC) had higher inosine and hypoxanthine contents. For 
IGF2, a heterozygous (AG) genotype of the SNP rs315806609 
(A/G) and a CT genotype of the SNP rs313810945 (T/C) had 
higher IMP contents than homozygous genotypes, which 
had higher inosine and hypoxanthine contents. Female KNC-
R chickens had a higher IMP content than males, whereas 
males had a higher hypoxanthine content than females. 
Therefore, the SNP rs313443014 (C>T) of the DUSP8 gene 
and the SNPs rs315806609 (A/G) and rs313810945 (T/C) of 
the IGF2 gene may be used as genetic markers in selection 

Table 4. Effects of sex on IMP, inosine, and hypoxanthine contents in 
KNC-R line

N1) Trait
Sex

Male (n = 106) Female (n = 124)

230 Inosine 37.37 ± 9.56 36.56 ± 10.55
Hypoxanthine 6.96 ± 2.35a 4.80 ± 1.68b

IMP 177.20 ± 23.20b 186.54 ± 24.35a

Male (n = 127) Female (n = 157)
284 Inosine 36.17 ± 10.22 36.09 ± 10.75

Hypoxanthine 6.56 ± 2.44a 4.56 ± 1.60b

IMP 181.13 ± 25.23b 187.99 ± 24.39a

IMP, inosine-5′-monophosphate; KNC-R, Korean native chicken -red-
brown line. 
1) N, number of samples. 
Individuals with specific genotypes are shown in parentheses. Nucleotide 
contents were expressed as mg/100 g.
a,b Means in the same row with different superscripts are significantly 
different (p < 0.05).
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and breeding programs to improve the flavor of KNC-R 
chicken meat.
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Figure S1. Electropherogram Data showing the location of the SNP (rs315806609A/G) located in 


the intron 1 (A) and synonymous SNP (rs313810945T/C) in the exon 3 of the IGF2 gene in the 


KNC-R line (B). 
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